انتقال بذر توسط علفخواران اهلی در اکوستم‌های مرتدی منطقه زاگرس مرکزی

اِنِس اقیمی ۱، مجید ایرانی ۲، مهدی بصیری ۱، مصطفی ترک‌اصفهانی ۱ و عبدالرضا مهاجری ۱

(تاریخ دریافت: ۱۳۹۱/۷/۳۰، تاریخ پذیرش: ۱۳۹۲/۳/۵)

چکیده

بمنظور بررسی انتقال بذور گیاهان توسط علفخواران اهلی (گوسفند و یی) در منطقه زاگرس مرکزی، ۲۴ مکان مرتدی در ۲۰۰ کیلوگرمی گرب شهربانی انتخاب و در هر مکان در جهت زمان مختلف (به ماه‌های خرداد، تیر، مرداد و شهریور) به‌طور تصادفی پک نمونه ترکیبی از هر گروه سرگنین نازه علفخواران اهلی جمع‌آوری گردید (در مجموع ۳۸ نمونه). نمونه‌های سرگنین در اتاق تاریک و در معرض جریان هوا از آزاد شده و سپس از هر کدام یک نمونه ۱۵۰ گرمی برای اعمال تیمار سرمازده انتخاب و به‌مدت ۳۰ روز در دمای ۲۰ درجه سانتی‌گراد در یخچال نگهداری شد. ترکیب بذری نمونه‌های سرگنین در دو ماه انتهایه جوانتنی در گلدانه به مدت ۸ ماه تعیین گردید.

در مجموع تعداد ۲۳۹ بذر متعلق به ۵۰ گونه گیاهی (۱۶ خانواده و ۴۸ جنس) از نمونه‌های سرگنی گروهی دز. ترکیب بذری نمونه‌ها بیشتر شامل گونه‌های علفی و خوشخوراکی بوده که به‌جز تولید بذرهای زیب و زیاد و انتقال از طریق سرگنی، شرایط مناسب انتقال روش‌های دیگر را ندارند. بفترب بیشترین و کمترین تعداد بذر جوانه‌ی زده در نمونه‌های تیر و خرداد دیده‌شده. همچنین، بیشترین و کمترین تعداد گونه بذری به‌ترتیب در نمونه‌های شهریور و خرداد بوده. با این حال، نتیجه‌های حاصل از ترکیب بذری نمونه‌های سرگنین شهریور و خرداد مشابه گردیده. با توجه به زادآوردن جنسی کثر گونه‌های گیاهی بیشتر در پوشش گیاهی منطقه، انتقال بذر از طریق سرگنی علفخواران اهلی می‌تواند نقش مهمی در احیای طبیعی پوشش گیاهی، در صورت فراهم‌آوردن سیار شیرای محیطی و مدیریتی داشته باشد.

نتایج این تحقیق می‌توانند ضمن افزایش داشت انتقال بذر گیاهان به‌طور ویژه در احیای پوشش گیاهی اکوستم‌های جرایی کشور به‌کار گرفته شود.

واژه‌های کلیدی: جوانتنی بذر، احیای طبیعی پوشش گیاهی، اکوستم‌های جرایی، پویایی بانک بذر خاک، مراعت نیمه استیپی، محیطی

بذری سرگنین

1. گروه مرتد و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
2. اداره کل منابع طبیعی استان اصفهان

anis_1242@yahoo.com

منبع مکانیاب: پست الکترونیکی: *
علفخواران مقام‌ده علفخواران مقاوم‌ده زیادی از بذر گیاهان را خورده و در داخل یا میان مکان‌هایی که در آن چرا کنند، انتقال می‌دهند (35). این بذر برای ساخته‌های نیازمندی (گاهی تا ۸۰ ساعت) در داخل مجاری گزارشی علفخواران بسیار مانده که در صورت سالم ماندن بذر، توانسته می‌شود در میانه‌ها می‌توانند از وضعیت مادربند (۱۵). محوریت بذر در سرگین علفخواران اغلب به بسیاری گوشه و زمین خاک و هم‌چنین ساختمان جامعه گیاهی که از آن تغذیه می‌کند بر می‌گردد (۱۹ و ۳۱). لذا به‌خصوصی که غیر از مادربند، گیاهی که بذر آنها سرگین انتقال از طریق سرگین علفخواران را دارد به‌طوری که انتقال حیات اغلب گیاهان از طریق بذر صورت می‌گیرد، ضروری است (۷۷).

مراتع نیمه استوای یکسره سهم قابل توجهی در تولید ناخالص میلی از تخلیه خدمات و کالاهای اکوسیستمی تنوعی که ارائه می‌دهند. در (۱۷) اما شدت تخریب در این مراتع به حدی بوده که نیازمند برنامه‌ریزی منابع برای احیای بوس‌های می‌باشد. این بذر به‌طوری که جزئی‌ریزی از بذر بذرکاری، برهم‌سازی احیای به‌بستر تجربی می‌باشد. انتقال حیات اغلب گیاهان از طریق سرگین علفخواران را دارد به‌طوری که انتقال حیات اغلب گیاهان از طریق بذر صورت می‌گیرد، ضروری است (۷۷).

علفخواران مقاوم‌ده می‌توانند از طریق تغییر در چرخه تولید مثل زاپیستی یا پرورش بذر خاک (Soil seed bank dynamics) برنامه‌بندی بذر خاک (32) (۲۱). آنها پرورش بذر خاک را از زیر سطح عمده‌کم کردن تولید بذر، انتقال بذر از منابع بذری در دسته (Seed dispersal from long-distance sources) و احیا گذشکین (۷۷).

علفخواران فضای خالی و تکاملی (Competition-free gaps) برای جوانی‌زنی و استقرار بذر در تأثیر می‌دهند. (۱) انقلاب بذر از طیف عمده‌کم کردن (Foliage is the fruit hypothesis) انتقال بذر گیاهان علفخوار در مراتع کشور امکان استفاده از این جانوران به عنوان غربال مناسب و بدون هر یک از انقلاب بذر گیاهان مرغوب و هدف از قطعات کمتر تخریب یافته به مکان‌هایی که دارای محدودیت‌هایی بذر می‌باشند و فراهم می‌سازد (۳۴).

هدف کلی این تحقیق بررسی تثبیت انتقال بذر گیاهان مختلف از طریق سرگین علفخواران اهلی (عمدتاً گوشه‌فند) در طول یک فصل کامل چرا در مراتع نیمه استوای منطقه زاگرس مقدمه

ساختار و عملکرد اکوسیستم‌های چرب‌پی (Grazing ecosystems) و هریبرولا (Herbivores) مراکز در نتیجه راه‌های تکاملی و گیاهان در زمان طولی مثل گیاه‌کشت است. (۲۴). در جو به‌طوری که از میان و نوسان‌های آب و هوا، اکوسیستم‌های چرب‌پی با رژیم داده و بسیاری (Disturbance regime) اخشن (۱) در نتیجه کنش متقابل بین علفخواران و پوسته گیاهی (Vegetation-herbivore interactions) مهم‌ترین دو عامل در این اکوسیستم‌ها تلقی به تهریم پوسته گیاهی و خاک است. در هر صورت می‌توان به توجه به انوع اکوسیستم‌های چرب‌پی و همچنین تاریخی خرمایی چرا (Evolutionary history of grazing) که علفخواران می‌توانند پوسته گیاهی را تحت تأثیر قرار دهند. (۲۴) ناشناخته‌ای ماده است (۲۴).

علفخواران تغییر و رشد می‌دارند در پوسته پوسته گیاهی اکوسیستم‌های چرب‌پی از طریق تغییر در چرخه تولید مثل زاپیستی یا پوسته بذر خاک (Soil seed bank dynamics) برنامه‌بندی بذر خاک (32) (۲۱). آنها پوسته بذر خاک را از زیر سطح عمده‌کم کردن تولید بذر، انتقال بذر از منابع بذری در دسته (Seed dispersal from long-distance sources) و احیا گذشکین (۷۷).

علفخواران فضای خالی و تکاملی (Competition-free gaps) برای جوانی‌زنی و استقرار بذر در تأثیر می‌دهند. (۱) انقلاب بذر از طیف عمده‌کم کردن (Foliage is the fruit hypothesis) انتقال بذر گیاهان علفخوار در مراتع کشور امکان استفاده از این جانوران به عنوان غربال مناسب و بدون هر یک از انقلاب بذر گیاهان مرغوب و هدف از قطعات کمتر تخریب یافته به مکان‌هایی که دارای محدودیت‌هایی بذر می‌باشند و فراهم می‌سازد (۳۴).
شکل ۱. اثرهای مهم علفخوانان برپوش گیاهی و در اکوسیستمهای مرطوب منطقه...
بمنظور بررسی تئاسیل سالانه انتقال بذر بذرگان توسط علف‌خواران اهلی 12 میکان مربوط به بافت متوسط 2 کیلومتر از یکدیگر در بهینه‌گاه‌های مختلف انگل همدیوار شد. در هر یک از 12 میکان انتخاب شده در طول فصل چرا (از خرداد تا شهریور ماه) در چهار زمان مختلف (به‌همه‌گاهی خرداد، تیر، مرداد و شهریور) یک نمونه تقابلی (Pooled dung sample) به‌طور تصادفی از هر گروه سرگین تاژه (عازی زه گونه بذر خارجی) ده‌ها به‌همه‌گاهی جمع‌آوری گردید (در مجموع 48 نمونه تقابلی). نمونه‌گیری سرگین باافلاکه‌پس از جمع‌آوری به‌طور تصادفی و خشک و بطور متوسط دمای گلخانه در طول مدت آزمایش‌های جوانه زنی 71 درجه سانتی‌گراد در طول روز 15 و درجه‌سانتی‌گراد در طول شب بود.

بطری ترکب ذیلی نمونه‌های سرگین در گلخانه به‌منظور بررسی ترکب بذری نمونه‌های سرگین در گلخانه از سبیل‌های کشت مستقل شکل به‌ایجاد 10 × 40 سانتی‌متر استفاده شد. برای بردن سبیل‌های از امکان خروج بذر و انتقال بذر از یکدیگر استفاده در زمان گلخانه خاک که به خداوند داده می‌شود تا در صورت وجود بذر زنجیره‌ای در نمونه‌های سرگین امکان می‌گردد. خاصیت خاکی به آن بود که در آن حالت فقط تعداد بذر بسیار کمی بعد از این تا میزان از سبیل‌های رشد جوانه‌های زنده در این مطالعه هیچ گونه تلاش برای شناسایی بذری که در حالت خواب بودند (Dormant Seeds) انجام نشده.
نمونه‌ها داده‌های اصلی و بدون تغییر آماری می‌باشد.

نتایج
محتوای بذری کل نمونه‌ها در مجموع 2029 بذر در گرم سرگین متعلق به 55 گونه از 17 خانواده و 48 جنس گیاهی از آزمایش‌های جوانزی نمونه‌های سرگین ثبت کردید (جدول 1). در خانواده Asteraceae و Poaceae تعداد گونه جوانزه‌دار در نمونه‌های سرگین کشت شده‌بودند. همچنین برای گونه‌های Cerastium inflatum (L.) 0/34 عدالت 0/9 درصد از بذرها (جدول 1) Medicago sativa (L.) 17/7 درصد از بذرها و Cardaria draba (L.) desv. و Cardaria versuta (L.) 11/3 درصد از بذرها (جدول 1) بیشترین تعداد بذر جوانزه‌دار بود. در حالی که برای گونه‌های زیر از نمونه‌های سرگین کشت شده جوانه زده. با این حال فقط بذر 0/2 عضله Noaea mucronata (Aschers. Et Schweinf.) بونهای و بونهای و تعداد 0/95 درصد از بذرها در نمونه‌های کشت شده بذر گردید (جدول 2). همچنین اثرات گونه‌های خوشخوارک بود 46/5 درصد از گونه‌ها و 0/777 درصد از گونه‌ها. در این صورت در بین گونه‌های جوانه‌دار گونه‌های خوشخوارک و با یا خوشخوارکی کمتر (به‌عنوان مثال در گونه‌های چویکی درک شد و گونه‌های (Papaver orientale) (L.) 0/777 درصد از گونه‌ها و 0/96 درصد از گونه‌ها گونه‌هایی آماده‌سازی و تجزیه و تحلیل داده‌ها قبل از تجزیه و تحلیل داده‌ها گونه‌های جوانه زده در Amanthus ascendens (Hornem) (Cardus pycnocephalus (L.) Setaria brevispica (K. Schum)، به‌منظور جلوگیری از تفسیر اشتباه از آماری تمامی سیمایی رشده حذف گردیدند. همچنین گونه‌های ثبت شده در نمونه‌های سرگین بر حسب طول عضله، رنگ روئی، میزان خوشخوارکی (2) و اندامه، تولید بذر و روش تکثیر و زاد آوری (4) 6 و 9 دسته‌بندی شدند.

به منظور بررسی تغییر در طیف بذری نمونه‌های سرگین در طول فصل چرا از آنالیز تطبیقی فوس گیری شده (Detrended Correspondence Analysis (DCA)) گرفته‌های واقوی نسبت گونه‌های بذری در نمونه‌های سرگین استفاده کردید (23). سپس با استفاده از آنتیلر واریانس یک‌طرفه (One-Way ANOVA) تغییر در طیف بذری نمونه‌های (Scores) سرگین بین ماه‌های مختلف با نظر گرفتن مختصات نمونه‌های سرگین در هر محدوده و معیار DCA به‌عنوان متعی (Fixed factor) وابسته و عامل ماه به عنوان عامل تابی (یعنی مستقل) بررسی گردید. آنتیلرها مطالعه به منظور بررسی تغییر در تعادل گونه و تعادل بذر جوانه‌زده در نمونه‌های سرگین بین ماه‌های مختلف به‌کار گرفته شدند. در صورت عدم وجود عامل ماه از آزمون مقایسه میانگین‌های (Tukey’s Multiple Comparison Tests) استفاده گردید (5).

اختلاف آماری معنی‌دار بین میانگین‌ها شد (5/0 = α). (Data normality)
قبل از انجام آن، نرمال بودن داده‌ها و وجود یا عدم وجود داده‌های پرت (Outliers) (Morded بررسی کردار جرگی و در صورت نیاز با روش مناسب تغییر داده (Data transformation) به‌طور کلی نیاز به طرف قرار آن ایجاد (Data transformation) داده (Data transformation) ر به‌طور کلی نیاز به طرف قرار آن ایجاد (Data transformation) DCA و VEGAN (23) و آنتیلر با استفاده از برنامه R نرم‌افزار آماری R انجام کردید. داده‌های مندرج در جدول 2 و...
جدول 1. لیست گونه‌های گیاهی جوانه زده از نمونه‌های سرگین. گونه‌ها بر اساس تعداد کل بذر جوانه‌زده در نمونه‌های سرگین هر ۱۵ گرم (۲۸ نمونه) مرتب شده‌اند.

<table>
<thead>
<tr>
<th>گونه</th>
<th>خانواده گیاهی</th>
<th>قسم رونمایی</th>
<th>فرم رونمایی</th>
<th>تعداد مشاهده شده (حداکثر ۲۸ نمونه)</th>
<th>قرارگیری نسبی (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td>Caryophyllaceae</td>
<td>یکسانه</td>
<td>پهن بر گل علفی</td>
<td>۴۶</td>
<td>۲۴/۲</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>چندسانه</td>
<td>پهن بر گل علفی</td>
<td>۱۷</td>
<td>۱۸/۷</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
<td>یکسانه</td>
<td>پهن بر گل علفی</td>
<td>۱۸</td>
<td>۱۱/۷</td>
</tr>
<tr>
<td>Noaea mucronata</td>
<td>Chenopodiaceae</td>
<td>یکسانه</td>
<td>پهن بر گل علفی</td>
<td>۲۹</td>
<td>۵/۴</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>Poaceae</td>
<td>یکسانه</td>
<td>گندمی</td>
<td>۳۱</td>
<td>۲/۱</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>پهن بر گل علفی</td>
<td>۵۴</td>
<td>۲/۶</td>
<td></td>
</tr>
<tr>
<td>Robeschia schimperi</td>
<td>Brassicaceae</td>
<td>پهن بر گل علفی</td>
<td>۲۲</td>
<td>۲/۴</td>
<td></td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td>Brassicaceae</td>
<td>پهن بر گل علفی</td>
<td>۳۲</td>
<td>۱/۸</td>
<td></td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Fabaceae</td>
<td>پهن بر گل علفی</td>
<td>۱۲</td>
<td>۱/۸</td>
<td></td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۹</td>
<td>۱/۷</td>
<td></td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae</td>
<td>چندسانه</td>
<td>پهن بر گل علفی</td>
<td>۲۲</td>
<td>۰/۷</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantaginaceae</td>
<td>پهن بر گل علفی</td>
<td>۱۰</td>
<td>۵/۵</td>
<td></td>
</tr>
<tr>
<td>Astragalus verus</td>
<td>Fabaceae</td>
<td>یکسانه</td>
<td>پهن بر گل علفی</td>
<td>۱۰</td>
<td>۵/۵</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td>Asteraceae</td>
<td>پهن بر گل علفی</td>
<td>۸</td>
<td>۰/۵</td>
<td></td>
</tr>
<tr>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>پهن بر گل علفی</td>
<td>۴</td>
<td>۰/۵</td>
<td></td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Asteraceae</td>
<td>پهن بر گل علفی</td>
<td>۳</td>
<td>۰/۴</td>
<td></td>
</tr>
<tr>
<td>Agropyron intermedium</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۹</td>
<td>۲/۴</td>
<td></td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>Papaveraceae</td>
<td>یکسانه</td>
<td>گندمی</td>
<td>۸</td>
<td>۲/۲</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>پهن بر گل علفی</td>
<td>۶</td>
<td>۰/۳</td>
<td></td>
</tr>
<tr>
<td>Agrostis stolonfera</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۶</td>
<td>۰/۳</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۵</td>
<td>۰/۳</td>
<td></td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>Boraginaceae</td>
<td>پهن بر گل علفی</td>
<td>۵</td>
<td>۰/۲</td>
<td></td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۵</td>
<td>۰/۲</td>
<td></td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td>Poaceae</td>
<td>گندمی</td>
<td>۳</td>
<td>۰/۲</td>
<td></td>
</tr>
<tr>
<td>Centaurea luristanica</td>
<td>Asteraceae</td>
<td>پهن بر گل علفی</td>
<td>۲</td>
<td>۰/۲</td>
<td></td>
</tr>
</tbody>
</table>

*تعداد کل بذر جوانه‌زده در نمونه‌های سرگین هر ۱۵ گرم (۲۸ نمونه) مرتب شده‌اند.*
سوده‌های گیاهی که در منطقه‌های بیش از ۲۰۰ نمونه گرفته‌شده‌اند، جدول ۱ را نشان می‌دهند.

<table>
<thead>
<tr>
<th>نام علمی</th>
<th>تبار</th>
<th>نتایج‌های سنجش</th>
<th>تعداد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۲۰۰۰۱</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td>Caryophyllaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۲۰۰۰۲</td>
</tr>
<tr>
<td>Erysimum langystylum</td>
<td>Brassicaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۳۰۰۰۲</td>
</tr>
<tr>
<td>Achillea vermicularis</td>
<td>Asteraceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۳۰۰۰۲</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td>Brassicaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۹۰۰۰۲</td>
</tr>
<tr>
<td>Fumaria asepala</td>
<td>Papaveraceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Polygonum molliaeforme</td>
<td>Polygonaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>Fabaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td>Fabaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Echinochloa oryzoidea</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Secale montanum</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Convolvulaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Brassica longate</td>
<td>Brassicaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td>Rosaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Callipeltis cucullaria</td>
<td>Rubiaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Buglossoides arvensis</td>
<td>Boraginaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td>Chenopodiaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td>Lamiaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Ceratocephalus falcatus</td>
<td>Asteraceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Bonium cylindricum</td>
<td>Apiaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>Poaceae</td>
<td>پهن بک علیفی</td>
<td>۲/۰۱۰۰۰۲</td>
</tr>
</tbody>
</table>
جدول 2. خصوصیات بذردهای جوان‌زده از نمونه‌های سرگین

<table>
<thead>
<tr>
<th>طول عمر</th>
<th>درصد از کل بذردهای جوان‌زده</th>
<th>تعداد بذردها</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>1/8</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>5/4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5/6</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>9/6</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>7/7</td>
<td>22</td>
<td>25</td>
</tr>
</tbody>
</table>

رویشی و غیرجنسی نیز زادواری دارند. (جدول 2.)

بودند که معمولاً تولید بذر در زیادی دارند. بیشتر گونه‌ها (56 درصد گونه‌ها) و 1/8 درصد کمتر از 2 میلی‌متر) بودند. با این حال، Taraxacum ر و Bromus tomentellus(L. officinale (Weber) بذردهای بزرگ (طول بذر برگ‌گرانت از 4 میلی‌متر) تولید می‌کنند نیز در بین گونه‌ها دیده شدند. همچنین انگ گونه‌های جوان‌زده در نمونه‌های سرگین (46 درصد از گونه‌ها و 96/3 درصد از بذردها) گونه‌های بی‌بودن که تا تعمیر بذر در زرد آوری می‌کنند. در هر صورت تعداد محدودی از گونه‌ها (به عنوان مثل Agrostis stolonifera (L) Cynodon dactylon (L) از نمونه‌های سرگین کشت شده جوان‌زدن که که علاوه بر تکثیر جنسی معمولاً از طریق
انتقال بذر توسط عفونت‌ها اغلب در اکوسیستم‌های مرتفع منهنه...}

شکل ۲. نمودار حاصل از آنالیز DCA (در مجموع ۷۵٪ از تغییرات) که تفاوت در ترکیب بذری نمونه‌های سرگین را با به کارگیری فراوانی نسبی گونه‌ها نشان می‌دهد. نام اختصاصی گونه‌ها شامل ۳ حرف اول اسم جنس و ۲ حرف اول اسم گونه است (پسیمیه ۱).

شکل ۳. مقایسه میانگین مختصات نمونه‌های سرگین در اتماد محور اول DCA (الف)، میانگین تعداد کل بذر (ب) و میانگین تعداد گونه‌های بذری جوانه‌زده در نمونه‌های سرگین ماهی مختلف فصل چرا. بازه آماری روز سونی‌ها خطا استاندارد در نمونه‌های هر ماه را نشان می‌دهد. حروف متفاوت نشان‌گرفته اندگی واریانس در بین مقادیر میانگین‌ها است (آزمون مقایسه میانگین توکی، ۵/۰۰٪).

پ. نتایج آنالیز واریانس نشان داد که اختلاف معنی‌داری بین تعداد بذری گونه‌های جوانه‌زده در نمونه‌های سرگین ماهی مختلف وجود دارد (۴/۰۰٪ = F(۴,۲۲) = ۵/۰۲، P<۰/۰۰۲). با این حال آزمون مقایسه میانگین توکی نشان داد که اختلاف معنی‌دار بین تراکم بذری نمونه‌های سرگین تیر و خرداد را تأیید نمود (۲/۰۰٪ = F(۴,۲۲) = ۵/۰۲، P<۰/۰۰۲).

M. sativa نسبی بذرهای گونه (۵/۸۰٪ درصد بذرانه در ماه شهروی در مقایسه با ۱۲/۸۰٪ درصد بذرانه در سایر ماه‌ها) بود (شکل ۲، پسیمیه ۱).

به ترتیب پیشترین و کمترین تعداد بذر جوانه زده در نمونه‌های سرگین ماهی تیر و خرداد نبسته‌گردید (شکل ۳).
فونه‌های عملی و خوش‌خوراکی بوده که معمولاً بازده‌های برتر و زیادی تولید می‌کنند. اگر یک مسئله از انتقال بذر در
اکوسیستمهای دیگر گزارش شده است (۷ و ۱۸) یا این عمل
علاقه‌ای در اکوسیستمهای ساواوی‌های چنار می‌باشد (۲۶).
در واقع چهار درصد از گیاهان به نقطه‌گذاری
دورتر از پایه‌های مادری عبور از دستگاه علف‌خواران و
دهف در سرگین است (۱۸ و ۳۷). تولد بذر با اندازه
کوچک (شکل گرد) عبور از دستگاه علف‌خواران
را می‌تواند سپرده و بدون حدبندی فیزیکی اکتاپه به‌دست
(Plant architecture) در طول دوره تکامل، معمولاً گیاهان
با نحوه نقل‌گشتی در از طریق سرگین به‌صورتی شکل گرفته که
دژره‌ها با یکی گیاهان سبز در گیاهان
مستعد برای انتقال از طریق سرگین به‌صورتی شکل گرفته که
دژره‌ها با یکی گیاهان سبز در گیاهان
C. inflatum
در نمونه‌های سرگین. (10) و علف‌خواران با
C. draba و M. sativa
چرا بر روی گیاهان همراه با اندامهای سبز بذرها را نیز مصرف
می‌کنند (۲۶). در هر صورت می‌توان مطالعه گیاهی چرا
عمل‌خواران بر روی اندامهای گیاهی همراه با بررسی تولید بذر
و مشخصه‌های بذر گیاهان و ارتباط بین عوامل با حضور
در بذر سرگین بررسی همکاری نسبی هر یک از عوامل در
محیط بذری سرگین علف‌خواران برداخت.

مشابه با نتایج مطالعات دیگر (۱۵ و ۳۳) نتایج
در (A. verus و N. mucronata) گونه‌های دو گونه
از نمونه‌های سرگین ثبت گردید. مصرف کم اندامهای گیاهان
بوتنه به همراه تولید بذر کم با اندازه بزرگ، که باعث هضم
بذر آنها در دستگاه علف‌خواران می‌گردد. از جمله
عواملی هستند که باعث انتقال کم بذر این گیاهان از طریق
سرگین می‌شود (۷۷). اما در گونه گیاهی فوق بذر ریز و زیاد
تولید بذر در امتحان مصرف کم از اندامهای گیاهی و هضم
بذر آنها در دستگاه علف‌خواران عوامل اصلی در
حضور کم بذر از انتهای اندازه سرگین بوده است.

شکل ۴- ب. این تفاوت باطور عمد به فراوانی نسبی بذر
گونه‌های (N. mucronata, C. draba, C. inflatum
(به‌ترتیب ۸۷/۴ و ۸۵/۴ درصد. بذرها در
نمونه‌های نیز در خردت مارویت می‌شود (۱۳۷).
در مجموع تعداد گونه بذری جوانه زده در نمونه‌های
سرگین در طول ماه‌های آخر چرا افزایش نسبی داشت.
به‌طوری که کمترین تعداد گونه بذری در نمونه‌های خردت ماه و
بیشترین تعداد در نمونه‌های شهریور ماه ثبت گردید
(شکل ۳- ج). بررسی نتایج ناحیه واریا تی اخلاق معمولی
بين تعداد گونه بذری جوانه زده در نمونه‌های
ماه‌های مختلف ماه دهه ۱۴۴۴/۰۳/۱۹۸۵ تا ۱۹۸۵ در
هر صورت نتایج آزمون مقایسه میانگین نتوکی تنا و وجود
اختلاف معنی‌دار بین تعداد گونه بذری نمونه‌های سرگین
شهریور و خرداد را تأیید نمود (۴/۷). در
بodore ۳- ج). این
تفاوت باطور عمد به حضور انحلالی ۶ گونه بذری
Brassica elongate (L.) Achilles vermiculiris (Trin.)
Trigonella (Boiss.) Potentilla kurdica (Boiss. & Hohen.)
Bugglosioides (L.) Banium cylindricum (Grossh.) elliptica
در نمونه‌های سرگین شهریور می‌شد
(M. pulegium, arvensis
(۱۳۷).

بحث و نتیجه‌گیری
محتوای بذری کل نمونه‌های سرگین
در مجموع بذر ۵۰ گونه‌های توسط علف‌خواران اهلی در طول
فصل چرا انتقال یافت که حدود تیمی از گونه‌های گیاهی ثبت
شهد در منطقه می‌باشد. (۱). در مطالعات دیگر نیز انتقال بذر
تعداد ثابت یافت که گیاهان اکوسیستمهای چرا از طریق
سرگین علف‌خواران گزارش شده است (۲۸ و ۲۹). چرا
انتحال بر روی اندامهای تولید می‌کنند در نتیجه چرا
بلی و گنی بندن از لحاظ مواد غذایی منجر به انتقال بذر
گیاهان می‌شود (۲۶).
بذردهنی اغلب گیاهان از ماه اردیبهشت در بهار خارج شده که در پایان این ماه بذردهنی بالغ آماده گل می‌گیرد. با توجه به این که بذردهنی بالغ هر آن شرایط مناسب خود را نمی‌یابد، کل آذین‌های مصرف شده گیاهان در طول این ماه خالق تری بذردهنی بالغ می‌شود. با توجه به این که بذردهنی بالغ مصرفی می‌خوردد، در نهایت بذردهنی بالغ مصرفی در این ماه و تا ماه آینده ادامه می‌یابد.

در این ماه علف‌های گیاهان سرگینی نیست که در خاکی که در بستر مخلوطی حضور تعداد ترسیک بذردهنی بالغ مصرفی بذردهنی بالغ بذردهنی بالغ مصرفی می‌شود. با توجه به این که بذردهنی بالغ هر آن شرایط مناسب خود را نمی‌یابد، کل آذین‌های مصرف شده گیاهان در طول این ماه خالق تری بذردهنی بالغ می‌شود. با توجه به این که بذردهنی بالغ مصرفی می‌خوردد، در نهایت بذردهنی بالغ مصرفی در این ماه و تا ماه آینده ادامه می‌یابد.

در این ماه علف‌های گیاهان سرگینی نیست که در خاکی که در بستر مخلوطی حضور تعداد ترسیک بذردهنی بالغ مصرفی بذردهنی بالغ بذردهنی بالغ مصرفی می‌شود. با توجه به این که بذردهنی بالغ هر آن شرایط مناسب خود را نمی‌یابد، کل آذین‌های مصرف شده گیاهان در طول این ماه خالق تری بذردهنی بالغ می‌شود. با توجه به این که بذردهنی بالغ مصرفی می‌خوردد، در نهایت بذردهنی بالغ مصرفی در این ماه و تا ماه آینده ادامه می‌یابد.

در این ماه علف‌های گیاهان سرگینی نیست که در خاکی که در بستر مخلوطی حضور تعداد ترسیک بذردهنی بالغ مصرفی بذردهنی بالغ بذردهنی بالغ مصرفی می‌شود. با توجه به این که بذردهنی بالغ هر آن شرایط مناسب خود را نمی‌یابد، کل آذین‌های مصرف شده گیاهان در طول این ماه خالق تری بذردهنی بالغ می‌شود. با توجه به این که بذردهنی بالغ مصرفی می‌خوردد، در نهایت بذردهنی بالغ مصرفی در این ماه و تا ماه آینده ادامه می‌یابد.
کاربرد در مدیریت اکوسیستم‌های گرایی

نتایج این مطالعه انتقال بذر گونه‌های متعددی از جمله گونه‌های هالی و خوش‌خوراک‌ها در طیف سرگین علفخوران اهلی نشان داد. با توجه به زداتوری و تکثیر جنسی (از طریق بذر)، اغلب گیاهان منطقه، انتقال بذر توسط علفخوران به فاصله دور از یاه‌های ماد و سالار علوفه، بذر تا در پوشاک گیاهی می‌تواند باعث حفظ و ایجاد تنش رزیستی در این گونه اکوسیستم‌ها گردد (16، 20، 24). دانش انتقال بذر گیاهان به همراه مدیریت صحیح مزرعه و مرتع می‌تواند کمک قابل توجهی به انتقال بذر گونه‌های مقصد و هدف به بانک بذر خاک براي ایجاد غلظت پوشش گیاهی در بک پاژ زمانی قابل قبول بنا به. مدیریت صحیح رابطه متقابل علفخوران و پوشش گیاهی با ماه و مرتع بسیاری بهبود گیري مناسب از علفخوران بهعویان حاله بادون هرگونه بذر گیاهان مرغوب و هدف به مکان‌هایی که دارای محصولی به‌یاد می‌باشد، ضروری است. در این ارتباط انجام کارگاه‌های آموزشی-توسعی برای بهبود و مرتعداران با ارائه مثالیات عملی و قابل لمس از انتقال بذر گیاهان مرغوب و مربوطی (مانند گونه علفخوران) توسط (B. tomentellus).

بطرور ویژه به مقایسه پتانسیل انتقال بذر توسط علفخوران در اکوسیستم‌های تحت جرای مفرط و معادل نرخ مهاجرت است. واضح است که انتقال بذر گیاهی بذر در انتقال بذر می‌شود که می‌تواند باعث انتقال بذر گیاهان غیرمرغوب شود که در شرایط گرای متعادل انتقال آنها از طریق سرگین علفخوران امکان‌پذیر نمی‌باشد.

ماه شهروی، گونه استراتاژی و چرایی علفخوران نیز در تغییر تعداد گونه بذر نمونه‌های سرگین نقش دارد. بذر تعداد قابل توجهی گونه گیاهی از نمونه‌های سرگین علفخوران جوانه زد که پیشتر شامل اکوسیستم‌های (Riparian ecosystems) حاشیه‌ای مانند کشاورزی، منابع آب و یا اطراف آب‌های می‌باشد.

این گیاهان بذری رطوبت قابل دسترس بالا علوفه بر گیفت علوفه خوب تا انتها یک فصل تابستان، با خطکردن شدن هوا در اواخر تابستان مجدداً تولید کلی آدنین و بذر قابل توجهی این گیاهان از میان باز می‌شود.

در نتیجه با توجه به نتایج مطالعه علفخوران بذری به این مقایسه و با توجه به سبک پس از اتمام دوره رشد گیاهان، بذر این مطالعه علفخوران اهلی چرا کنند گونه‌ها می‌باشد. انتقال این بذر گونه‌ها در مطالعات دیگر نیز گزارش شده است (15 و 23).

مقایسه ترکب بذری نمونه‌های سرگین، نخواست معمایی برای ترکب بذری نمونه‌های شهریور با نمونه‌های در گیاه‌های زراعی را نشان داد. این نتایج در ترکب بذر گونه مربوط به گیاه باریک یا بذر گونه علفخوران پیوسته (M. sativa) سطح کمتری مربوط به حضور بذر گونه بذری در نمونه شهریور ماه بود. در این ماه بدلیل در دسترس تبادل علوفه واکنشی الکرات، علفخوران علوفه بر نیز نیا خیال بر گیاهان علفخوران یا چرا روی گیاهان خشکسیر و بیشتر غیر خوش‌خوراکی می‌باشد. این گیاهان به‌دلیل جرای کمتر در مقایسه با گیاهان خوش‌خوراکی که در طول فصل روش تحت چرای مفرط بوده‌اند، بخش بیشتری از منابع غذایی خود را به‌طور کامل بیش از رشد زنگی اختصاص می‌دهند (30). در نتیجه در اواخر فصل همچنین بذر زایی با روی یا به‌طوری که داشته که در صورت چرا امکان انتقال بذرانش از طریق سرگین وجود دارد (7). در هر صورت تاکنون مطالعه‌های

منابع مورد استفاده

1. ابراهیمی، م. ع.، سعیدی، ف. م.، رزایی، و ش. فاطمی. 1381. مطالعات شناسایی حوزه آبخیز کرمجنی (از زیر حوزه آبخیز سد گلابیان) گزارش بزرگیگاهی و مرتع. جلد 2. دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان. 1385 صفحه.
Bakker, J. P., L. Galvez and M. Mouissie. 2008. Dispersal by cattle of salt-marsh and dune species into salt-marsh and


Netherlands pp. 953.

Bruun, H. H. and P. Poschlod. 2006. Why are small seeds dispersed through animal guts: Large numbers or seed
size per se?. *Oikos* 113: 402-411.

Cosyns, E., S. Claerbout, I. Lamoot and M. Hoffmann. 2004. Endozoochorous seed dispersal by cattle and horse in


Cosyns, E. and M. Hoffmann. 2005. Horse dung germinable seed content in relation to plant species abundance,


Eycott, A. E., A. R. Watkinson, M. R. Hemami and P. M. Dolman. 2007. The dispersal of vascular plants in a forest


238-248.


Haarmeyer, D. H., B. M. Bosing, U. Schmiedel and J. Dengler. 2009. The role of domestic herbivores in
endozoocorous plant dispersal in the arid Knersvlakte, South Africa. *South African Journal of Botany* 76:
359-364.


Hester, A. J. 2006. Impact of large herbivores on plant community structure and dynamics. PP. 97-141. In: Danell,
K., R. Bergstrom, P. Duncan and Pastor. (Eds.), Large herbivore ecology and ecosystem dynamics. Cambridge
University press, Cambridge.

deer (*Cervus elaphus* L.) dung and its potential importance for vegetation dynamics in subalpine grasslands. *Basic
and applied Ecology* 11: 542-553.

Janzen, D. H. 1984. Dispersal of small seeds by big herbivores: Foliage is the fruit. *American Naturalists* 123:
338-353.

Kinucan, R. J. and F. E. Smeins. 1992. Soil seed bank of a semiarid Texas grassland under three long-term 36-years

Klimesov, J. and I. Klimes. 2007. Bud banks and their role in vegetation regeneration a literature review and
proposal for simple classification and assessment. *Perspective in Plant ecology, Evolution and systematic 8*:
115-129.


<table>
<thead>
<tr>
<th>نام علمی گونه</th>
<th>سیفولوژی</th>
<th>فراوانی نسبی (نرخ)</th>
<th>سندرم</th>
<th>شهرهور</th>
<th>مردان</th>
<th>گونه جوان‌الساله‌اند</th>
<th>گونه بزرگسالان</th>
<th>گونه نیم‌بزرگسالان</th>
<th>گونه کوچک‌سالان</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td>Caryophyllaceae</td>
<td>100</td>
<td>118</td>
<td>26</td>
<td>46</td>
<td>72/12</td>
<td>61/6</td>
<td>23/61</td>
<td>5/6</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
<td>33</td>
<td>55</td>
<td>17</td>
<td>7</td>
<td>10/2</td>
<td>8/15</td>
<td>7/13</td>
<td>2/10</td>
</tr>
<tr>
<td>Roschewia schimperi</td>
<td>Brassicaceae</td>
<td>10</td>
<td>13</td>
<td>6</td>
<td>8</td>
<td>5/3</td>
<td>8/1</td>
<td>11/15</td>
<td>1/5</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>Poaceae</td>
<td>16</td>
<td>18</td>
<td>9</td>
<td>41</td>
<td>42/4</td>
<td>41</td>
<td>1/3</td>
<td>3/4</td>
</tr>
<tr>
<td>Noaea mucronata</td>
<td>Chenopodiaceae</td>
<td>6</td>
<td>33</td>
<td>13</td>
<td>1</td>
<td>7/8</td>
<td>8/5</td>
<td>2/3</td>
<td>1/5</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td>3/7</td>
<td>4/3</td>
<td>1/5</td>
<td>3/6</td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td>Brassicaceae</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>1/3</td>
<td>1/7</td>
<td>1/4</td>
<td>2/3</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Asteraceae</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0/4</td>
<td>0/3</td>
<td>1/5</td>
<td>0/7</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td>Asteraceae</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0/3</td>
<td>0/2</td>
<td>1/3</td>
<td>0/3</td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Fabaceae</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3/1</td>
<td>0</td>
<td>1/5</td>
<td>0/1</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td>Brassicaceae</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td>Caryophyllaceae</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>Poaceae</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Erysimum langistylum</td>
<td>Brassicaceae</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Fumaria asepal</td>
<td>Papaveraceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Poaceae</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>Fabaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Centaurea hystanica</td>
<td>Asteraceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Ceratophyllum falcatus</td>
<td>Asteraceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>Papaveraceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Agropyron intermediate</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>Boraginaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Astragalus verus</td>
<td>Fabaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Polygonum mollissimum</td>
<td>Polygonaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Echinochloa oryzoides</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Secale montanum</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Callipeltis cucullaria</td>
<td>Rubiaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td>Chenopodiaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantaginaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Convolvulaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Achillea vermicularis</td>
<td>Asteraceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Brassica elongata</td>
<td>Brassicaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td>Rosaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td>Fabaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Bonium cylindricum</td>
<td>Apiaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Buglossoides arvensis</td>
<td>Boraginaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td>Lamiaceae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>