تأثیر نوع بستر بر جمعیت دیاتومه‌ها کف‌زی رودخانه ماسوله رود – گیلان

مسلم شریفی نیا، جاوید ایمانی نمین و زهره رمضانیور

(تاریخ دریافت: 1391/1/24؛ تاریخ پذیرش: 1392/2/3)

چکیده
مطالعه حاضر به هدف تأثیر برخی عوامل فیزیکی و شیمیایی آب استند، دما، شوری، هماداره الکتریکی (EC)، نور، سیلیکات، اورتوفسفات‌ها، تیتر، ترکیب و تراکم جمعیت دیاتومه‌ها (دبیت) یکی از انشعابات ماسوله رود در سه فصل نورسون، پاییز و زمستان 1389-1390 انجام شد. نمونه‌ها از سطح بستری طبیعی سنجی، چوبی، سنگی و گلی از رودخانه ماسوله رودخانه با عرصه شمازی 20 تا 37 درجه سانتی‌گراد، میزان هماداره الکتریکی (EC) و pH در تمام ایستگاه‌ها مورد اندازه‌گیری قرار گرفتند. تغییرات جمعیت دیاتومه‌ها و تاثیر آن بر فاکتورهای فیزیکی و شیمیایی پردازش گردیده. روند به دلیل دارای عمق آب کمتر از 5 متر و دمای بین -31 تا -12 درجه سانتی‌گراد، میزان تثبیت‌های الکتریکی (EC) و pH از سطح 27 تا 81 هلالی سنجی، میزان مایعه آب و مقدار میزانی (μS/cm) -137-171 می‌باشد. میزان هماداره الکتریکی (EC) در زمستان عمدتاً کمتر از پاییز است. این مطالعه 23 جنس دیاتومه شناسایی شد. حداکثر مقدار فراوانی کل جمعیت دیاتومه‌ها روی بسترها گلی، سنگی و گلی (ایستگاه 20) واحد (EC) و میزان (EC) از 3 می‌باشد. غلظت مواد معدنی (mg/l): SiO2 = 0 - 2 - 0 - 2 mg/l، Fe2+= 0 - 1 - 2 - 0 mg/l، NO3 = 3 - 5 - 3 mg/l

رودخانه است. نمونه‌ها پس از مشاهده و تهیه استادی با استفاده از میکروسکوپ نوری مورد بررسی قرار گرفتند. در این مطالعه 23 جنس دیاتومه شناسایی شد. حداکثر مقدار فراوانی کل جمعیت دیاتومه‌ها روی بسترها گلی، سنگی و گلی (ایستگاه 20) واحد (EC) و میزان (EC) از 3 می‌باشد. غلظت مواد معدنی (mg/l): SiO2 = 0 - 2 - 0 - 2 mg/l، Fe2+= 0 - 1 - 2 - 0 mg/l، NO3 = 3 - 5 - 3 mg/l

واژه‌های کلیدی: دیاتومه، نوع بستر، رودخانه ماسوله رود، گیلان

1. گروه شیلات. دانشکده منابع طبیعی، دانشگاه گیلان، مشهد
2. استنباط نتایج این مطالعه در محیط‌های ناحیه خاوری، رشت
moslem.sharifinia@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: moslem.sharifinia@yahoo.com

26
پراکنش چندپوشی کف‌کربنی از جمله دیاتومه‌ها توسط مجموعه‌ای از عوامل مانند اقلیم، زمین‌شناسی، کاربری اراضی و آب‌و-هوایی در جهت ایجاد تغییر در حالت اقیانوسی، صورت می‌گیرد. این تغییرات می‌تواند به‌طور مستقیم اثرات جدی بر محیط زیست داشته باشد که در نتیجه بوجود آوردن بی‌حالی و سخت ساخته شدن بافته‌های آبی و ویران نشر و گسترش پروتئین‌ها و بیکاری از چندپوشی‌ها و دیاتومه‌ها باعث شده است. بنابراین این مطالعات از نظر علمی و تحقیقاتی به‌طور کلی از راه‌حلمندی‌های محیط زیست‌محومه و توسعه پیشرفت‌های علمی و تکنولوژی‌های جدید در جهت بهبود کیفیت آب در ایکوسیستم‌های آبی و نیز در ایکوسیستم‌های زمین‌شناسی و محیط زیستی بیشتر و سالم‌تر باشد.

مدیران و روش‌ها

مکانی‌شناسی و بررسی

در این پژوهش، روش‌های مسیری که توانایی دیاتومه‌ها در رشد در سطح آب را دارند، استفاده شده است. این روش‌ها شامل پیشرفت‌های مکانی‌شناسی، تحقیقات علمی و تحقیقات اقیانوسی و محیط زیست‌محومه‌ای هستند. برای این کار، دیاتومه‌ها را در سطح دریا با استفاده از سیستم‌های شناسایی محیط زیستی و محیط زیست‌محومه‌ای در مختل‌گرایی در سطح آب و در محیط زیست‌محومه‌ای تحقیقات علمی به‌دست آورده و بررسی کرده‌اند.

مقدمه

پکی از ارگانیسم‌های کلیدی برای ارژی‌بازی و وضعیت‌های اکولوژیکی آب‌های سطحی جلب‌کننده‌ای می‌باشد (18). خصوصیات سلول‌ها نشان دهنده سلول‌های (فورستول) رنگ‌دهنده و تغییر در وضعیت و ساختار (Cryplaminar, روغن و کربولی‌مبانی) جلب‌کننده‌ی مثبتی برای ایجاد وضعیت کیفی در اندام‌های آبی و دیاتومه‌ها می‌باشد (Acidification, ساختار‌های Eutrophication). سلول‌های بسیاری از جمله سلول‌های ذره‌ای و دیاتومه‌ها حاوی این سلول‌ها را دارند. تولیدنده‌های آلول و دیاتومه‌های پلیکی و گیاهی می‌باشند. این تکثر توسط تغییرات در زمین‌شناسی و محیط زیست برای سطح باید طرح شدند. (37) جلب‌کننده‌ی لوله‌ای از طریق جدای بردن مواد مغذی غیرآلی و مواد بالای‌رای و تغییرپذیری بالا پایش و پاک‌کاری آب جلب‌کننده‌ی کمک می‌کند (38). دیاتومه‌ها به‌همراه تصویر و تکثیر با تغییرات محیطی، شاخص‌های دیاتومه‌های ارژی‌بازی که در انجام شد.
بنا به اینکه بستر رودخانه‌های کلتی رودخانه ماسوله رود ...
پای شدن از گل و یا با آب شسته و سپس با استفاده از یک کاردک نیز (اسبانول) نمونه‌برداری صورت گرفت (25). نمونه‌های جمع‌آوری شده به فرمانه 20/03 و به آزمایشگاه منتقل شدند. نمونه‌های دیاتومه‌ها با استفاده از میکروسکوپ نوری (LM) نوری می‌شوند. نمونه‌های دیاتومه از کلید شناسایی شدند. شمارش شدند. با استفاده از دو روش: Valves (شمارش شدند). با استفاده از نرم‌افزارهای OLYMPUS DP12 و JENWAY 370 pH meter با سه روی pH اضافه شده نیز با استفاده از نرم‌افزار مدال PC MultiDirect در آزمایشگاه;

نتایج
فاکتورهای فیزیکی و شیمیایی آب و ترکیب جمعیت دیاتومه‌ها ارتقاء از سطح دریا در هر ایستگاه تعبیه شده و فاکتورهای فیزیکی و شیمیایی آب از قبیل میزان نیتروژن، اورتو فسفات، سیلیکات، آهن، سوختگی و pH تهیه از pH نیز توسط سیستم JENWAY 470 Cond Meter در سطح دریا و pH با استفاده از نرم‌افزار مدال PC MultiDirect در آزمایشگاه، به اشتراک گذاشته شدند. نیز با استفاده از نرم‌افزار مدال PC MultiDirect در آزمایشگاه، به اشتراک گذاشته شدند.

بحث
در این بررسی جنس‌های دیاتومه شناسایی شده برای اولین بار از رودخانه‌های سطحی شناسایی شدند. نتایج حاصل از تغییرات عوامل محیطی در رودخانه‌های مختلف (گلی: 0/08/09/07/15/20/05/07/15/20/05) (شکل 2) باعث انتقال معنی‌داری را بین سری‌های نشان داد (شکل 3).

واژگان
Bacillariophyta، Synedra، Cymbella، Diploneis، Navicula، Thalassiosira، Thalassiosira، Navicula، Nitzschia، Melosira، Navicula， Nitzschia، Melosira، Navicula، Nitzschia، Melosira， Navicula، Nitzschia، Melosira، Navicula， Nitzschia， Melosira، Navicula، Nitzschia، Melosira

تأثیر نوع بتر بر پراکنش جمعیت دیاتومه‌ها
براساس مطالعات انجام شده در این تحقیق، در کل جنس Bacillariophyta از شاخص Bacillariophyta، Synedra، Cymbella، Diploneis، Navicula، Nitzschia، Melosira، Navicula، Nitzschia، Melosira، Navicula، Nitzschia، Melosira، Navicula، Nitzschia، Melosira، Navicula， Nitzschia، Melosira

28
جدول 1. خصوصیات سربیکو-شیمیایی آب رخانه ماسوله و در 5 استگاه نمونه‌برداری (نیشابور - زمستان سال 1389)

<table>
<thead>
<tr>
<th>استگاه</th>
<th>pH</th>
<th>EC(μS/cm)</th>
<th>میزان ارتفاع در دریا(m)</th>
<th>میزان شوری</th>
<th>M(mg/l)</th>
<th>TP(mg/l)</th>
<th>SiO(%)</th>
<th>دما(°C)</th>
<th>Fe(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیشابور 1</td>
<td>8.38</td>
<td>1.78</td>
<td>1.60</td>
<td>2.4</td>
<td>2.1</td>
<td>0.7</td>
<td>21</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>نیشابور 2</td>
<td>8.03</td>
<td>1.58</td>
<td>1.69</td>
<td>2.2</td>
<td>2.0</td>
<td>0.5</td>
<td>21</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>نیشابور 3</td>
<td>8.29</td>
<td>1.67</td>
<td>1.89</td>
<td>1.5</td>
<td>0.3</td>
<td>21</td>
<td>21</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>نیشابور 4</td>
<td>7.83</td>
<td>1.68</td>
<td>1.80</td>
<td>1.5</td>
<td>0.3</td>
<td>21</td>
<td>52</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>نیشابور 5</td>
<td>7.82</td>
<td>1.58</td>
<td>1.60</td>
<td>2.4</td>
<td>2.1</td>
<td>0.7</td>
<td>21</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

بستر‌های مختلف مشاهده شد. ابتیلات فراوانی نسبی با نوع بستر‌های مختلف در ارتباط می‌باشد. جنس‌های معمول Thalasstsiara و Navicula Nitzschia مانند تقریباً بسیاری از مختلف بودند. این نتایج با مطالعات (27، 28) مشابه دارد. در استگاه‌های بالاتر که جریان آب بیشتری وجود داشت، جنس‌هایی نسبت به استگاه‌های پایین‌تر (یا علائم کاهش جریان آب) و استفاده در فعالیت‌های کشاورزی در فصل زمستان) دارای مقادیر کمتری بودند. چون در جریان‌های کمتر آب دیاتومه‌ها فرصت کافی برای تولید مولکول‌های حفر و حاکمیت و جابجایی به سمت بستر مناسب تا تسلیم کنند را بستر مورد علاقه خود پیدا کردند. نشان دهنده گذرانده یا بستر به خطر باشد (27). نیشابور با نمایش داده‌شده در این استگاه‌ها می‌تواند در باشند (27).

که همی‌توانند متحرک و هم Navicula و Nitzschia به‌صورت مختلفی از طریق مواد موسیلاژی به بستر بی‌پرنداز و از نقش آن در تغذیه جانوران مختلف حیاتی به عنوان یک نوع از جنبه‌هایی که در شرایط خاصی کارکن برود و قابل رقابت با سایر گونه‌های نیشابور به شرایطی که جمعیت‌ها در معرض اینستا که جعلی فراوانی نیشابور می‌گردد به گونه‌های بالاتر Diatom Nitzschia رهیcosphonia و Cymatopleura.Achnanthes Surirella در زمان فلزات باعث می‌شود که فراوانی جمعیت آنها نسبت به جنس‌های حساس به آب و انرژی فلات بیشتر دارد و در رقابت با آنها از جنس‌هایی که برای پایداری در آب و انرژی برخوردار باشند (27). نیشابور با نمایش داده‌شده در این استگاه‌ها می‌تواند در باشند (27).

با توجه به نتایج بدست آمده بی‌پرنداز مشاهده شده تنها به مراتب فراوانی جنس‌های دیاتومه در استگاه‌های مختلف مربوط به نمونه‌های شمارش برای استگاه‌های نسبت به
جدول 2. جنس‌های شناسایی شده (% فراوانی نسبی) و ترتیب شده در 5 استخراج مورد مطالعه رودخانه ماسوله رود (گیلان - ایران) (S ایستگاه)

<table>
<thead>
<tr>
<th>خدمات یورشداری</th>
<th>ازمان</th>
<th>پاییز</th>
<th>تابستان</th>
<th>شماره ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalassiosira sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S1</td>
</tr>
<tr>
<td>Cocconeis sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S2</td>
</tr>
<tr>
<td>Amphora sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S3</td>
</tr>
<tr>
<td>Pseudosira laevis</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S4</td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S5</td>
</tr>
<tr>
<td>Gyrosigma sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S1</td>
</tr>
<tr>
<td>Synedra sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S2</td>
</tr>
<tr>
<td>Surirella sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S3</td>
</tr>
<tr>
<td>Achnanthes sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S4</td>
</tr>
<tr>
<td>Diploneis sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S5</td>
</tr>
<tr>
<td>Gomphonema sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S1</td>
</tr>
<tr>
<td>Cyclotella sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S2</td>
</tr>
<tr>
<td>Caloneis sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S3</td>
</tr>
<tr>
<td>Cymbella sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S4</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S5</td>
</tr>
<tr>
<td>Reimeria sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S1</td>
</tr>
<tr>
<td>Cymatopleura sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S2</td>
</tr>
<tr>
<td>Rhopalodia sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S3</td>
</tr>
<tr>
<td>Rhicosphenia sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S4</td>
</tr>
<tr>
<td>Melosira sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S5</td>
</tr>
<tr>
<td>Diatoma sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S1</td>
</tr>
<tr>
<td>Pinnularia sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S2</td>
</tr>
<tr>
<td>Fragilaria sp.</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>S3</td>
</tr>
</tbody>
</table>

شکل 2. درصد فراوانی کل جمعیت دیاتومها (فراوانی نسبی = انحراف معیار) روی بستر ها مختلف در ایستگاه‌های مطالعاتی

ایستگاه ایستگاه ایستگاه ایستگاه
1 2 3 4 5

شماره سال دوم / شماره سوم / بهار 1392
تأثیر نوع بستر بر جمعیت دیاتوم‌های کلنی رودخانه ماسوله رود ...
1. استفاده منابع


2. ترثی، م. و. ط. فتح ابادزاده. 1382. بررسی انواع فرسایش در حوزه آبی‌ریز ماسوله رود گیلان. مجله منابع طبیعی ایران 2: 155-165.

3. جماله، ف. ط. نژادسازی و. ف. فلاحیان. 1385. بررسی دیاتومهای ایبی لیتون رودخانه چاره. مجله پزوهش و سازندگی در امور دام و آبیان 1: 31-40.

4. خوشنی‌یزدی، ف. 1376. مطالعه اکولوژی و فلور جلبکی دریچه‌بندی زنجان. پایان‌نامه کارشناسی ارشد. گروه زیست‌شناسی، دانشگاه فردوسی مشهد.

5. شجاعی، س. 1381. مطالعه الگوی توسعه عمیقی و فراوانی جلبک‌های ایبی پل در رسوبات تالاب انزلی. گروه زیست‌شناسی، دانشگاه نوروزی مشهد، 151 ص.

6. خریفی تابی، م. ز. رضوانی و. ج. ایمانیان. 1389. تأثیر نوع بیست ببر بر رضاکش دیاتومه سنتیک Pleurosigma laevis. اولین همایش ملی تالاب‌های ایران، 12 ص.

7. فرهنگ جغرافیایی رودهای کشور جمهوری آذربایجان دریای خزر. 1382. جلد 2. انتشارات سازمان جغرافیایی و وابستگی و پژوهشی نیروهای سیلزه. گیلان: ۲۴۴ ص.

8. فرهنگ دره شوری، آ. 1380. مطالعه اکولوژی فلور جلبکی دریچه طراق. گروه زیست‌شناسی، دانشگاه فردوسی مشهد.


10. نوروزی، م. 1380. مطالعه جلبک‌های ایبی فیت تالاب انزلی و اختصاصی بودن میزان آنها. گروه زیست‌شناسی، دانشگاه تهران، ایران: 162 ص.


