بررسی ساختار تیپ‌های مختلف جنگلی با استفاده از شاخص‌های نزدیک‌ترین همسایه

(مطالعه موردی: بخش گرانین جنگل خیبرود)

وحید علی‌جانی، جهانگیر فقحی، محمود زبری و محمد‌رضا مروی مهاجر

(نحوه دریافت: ۱۳۹۱/۸/۳، تاریخ پذیرش: ۲/۸/۱۳۹۲)

چکیده
پرای مدیریت صحیح اکوسیستم‌های جنگلی داشتن اطلاعات کافی در رابطه با ساختار گونه‌های درختی ضروری می‌باشد. در این تحقیق، ساختار گونه‌های درختی تیپ‌های راش (Fagus-Carpinus)، راش-مصرع (Fagus-Carpaceae) و مصرع-بی‌روت (Carpinus-Fagus) در بخش‌های مختلف ۵۰۰ هکتاری از جنگل خیبرود در شرق کشور بررسی شد. نتایج نشان دهند که محدوده‌ی موفقیت مکانی ساختار در بخش‌هایی با جنگل خیبرود بیشتر از دریافت‌های مبحث شد. نتایج حاصل از شاخص‌های زاوهای یک‌گونه، زبان‌یافته‌های آمیخته و ابعاد قطر برای گونه‌های Carpinus betulus و Fagus orientalis در بخش‌های کناره‌ی سیاه و در بخش‌های کناره‌ی سبز اختلافی بیشتری نشان دادند. مقایسه‌ی ساختار Carpinus betulus و Fagus orientalis نشان دهنده موفقیت‌های مشابهی در بازیابی گونه‌های مختلف است. نتایج نشان دهنده موفقیت‌های مشابهی در بازیابی گونه‌های مختلف است. نتایج نشان دهنده موفقیت‌های مشابهی در بازیابی گونه‌های مختلف است. نتایج نشان دهنده موفقیت‌های مشابهی در بازیابی گونه‌های مختلف است.
یکی از مشکلات موجود در کمی‌سازی ساختار گنجک‌های ایران، به‌عنوان یکی از آخرین نواحی یافته شده از گنجک‌های پردرخت دوران باستان شناخته شده‌اند. (16) این موضوع از اینکه این گنجک‌ها سطح کمی از ساختار گنجک‌های پیچیده‌ای به‌دست آمده‌اند که از یک درصد ناشناخته خاک، ذخیره این، زیستگاه حیات و جذابیت ترویج دارد و به‌عنوان یکی از نیازهای ویژه‌ای از ممکن و مادی زیادی حمیل می‌شوند. (14)

علاوه بر این، مشخصات نوری ساختار گنجک‌های یکی از مباحث مورد توجه و پژوهش‌های مختصاً در راستای اهداف ساختاری نزدیک به طبعیت می‌باشد. (3) به‌منظور بررسی ساختار گنجک، نیاز است که تعریف مشخصات از ساختار و زیست‌گاه آن صورت گیرد. در همین راستا، منحنی‌های مختلف فیزیکی در نظر گرفته شده و زیست‌گاه متناسب نوع موقعیت مکانی، نوع آبگیری و نوع ابعاد درختان را توصیه می‌نماید. (9و8و7و6و5و4و3و2و1)

تشخیص‌های مکانی درختان ممکن کننده کرک درک یا پراکنده آنها می‌باشد که ممکن است از یکی از گونه‌های که، جنبه‌های نمایندگی، متغیر و یا حالتی از منابع آنها یکی (2). تنش گونه‌های به بررسی چیدمان مکانی گونه‌های مختلفی از ارتباط با یکدیگر می‌پردازد و ابعاد درختان در برگیرندگی چیدمان مکانی مشخص‌سازی‌هایی از جمله فرایند سینه، ارتقای است (20). به منظور بررسی ساختار گنجک، یک گروه تحقیقاتی از مؤسسه صمیدریت گنجک دانشگاه گوتنبرگ (آلمان) مجموعه‌ای از مشخصات ساختاری نزدیک‌ترین گونه‌هایی را توصیه دادند. این شاخه‌ها با استفاده از پلک‌های شیمیایی به بررسی نزدیک‌ترین گونه‌هایی هر دو درخت با نگاه مجزا در توده گنجک‌های می‌پردازند. (20)

کیت و همکاران در بررسی این شاخه‌ها به توانایی بالای آنها در تشخیص دقیق ساختار توده و همچنین بررسی سیستمیک تولید شده از گونه‌های پردرخت (81و80و79و78و77و76و75و74و73و72و71و70و69و68و67و66و65و64و63و62و61و60و59و58و57و56و55و54و53و52و51و50و49و48و47و46و45و44و43و42و41و40و39و38و37و36و35و34و33و32و31و30و29و28و27و26و25و24و23و22و21و20و19و18و17و16و15و14و13و12و11و10و9و8و7و6و5) که در تمامی بین‌رایزی‌های توسه در مناطق شمالي‌گر شکور حفظ و گسترش این گنجک‌ها به‌عنوان مهم‌ترین و با ارزش‌ترین اکوسیستم‌های گنجک‌های چرب و منبع مهم تولید چرب و سایر فرآورده‌های گنجک‌های منظم قرار گیرد. (7) به منظور صمیدریت به‌هیچ‌یک منابع به‌ارزیش پیش‌بینی درک صحیحی از ساختار این گنجک‌ها ضروری است. به همین دلیل هدف از این
شکل 1. نقشه تپه‌های جنگلی بخش گرازین جنگل آموزشی و پژوهشی خیبرود

تحقیق علاوه بر کمی سازی ساختار تپه‌های جنگلی بخش گرازین جنگل خیبرود، مقایسه ساختار آنها با یکدیگر می‌باشد.

مواد و روش‌ها

مشخصات منطقه مورد مطالعه

این مطالعه در تپه‌های راش (Fagus), راش-ممرز (Carpinus-Fagus) و ممرز-لوبو (Carpinus) بخش گرازین که با مساحتی در حدود 1000 هکتار، سومین بخش از جنگل آموزشی و پژوهشی دانشگاه منابع طبیعی دانشگاه تهران (جنگل خیبرود) می‌باشد، انجام شده است (شکل). سه ماده این بخش آمک و متعلق به دوران ژوراسیک علیا بوده و خاک این منطقه به‌طور عمده جزء خاک‌های قهوه‌ای جنگلی می‌باشد. میران بارندگی در این بخش در حدود 1600-1300 میلی‌متر در سال است که حداقل آن در تیر ماه و حداکثر آن در مهر ماه ریزش می‌کند. همچنین

شناخت‌های مورد مطالعه

در این تحقیق به مظاهر بررسی ساختار تپه‌های مذکور مشخصاتی از جمله نوع گونه، قطر برابر سنین، ارتفاع و همچنین فاصله و آزمونه درخت نسبت به مرکز قطعات نمونه اندام‌های گیره شد. سپس داده‌های جمع‌آوری شده به منظور انجام
جدول 1. تشریح شاخص‌های ساختاری مبتنی بر نزدیکترين همسایگان (بدون واحد)

<table>
<thead>
<tr>
<th>شرح</th>
<th>فرمول</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>تأثیر</td>
<td>$W_i = \frac{1}{n} \sum_{j=1}^{n} v_{ij}$</td>
<td>ت نوع موقعیت مکانی</td>
</tr>
<tr>
<td>ابعاد قطر برابر سینه</td>
<td>$D_i = \frac{1}{n} \sum_{j=1}^{n} s_{ij}$</td>
<td>ت نوع ابعاد قطر برابر سینه</td>
</tr>
<tr>
<td>ابعاد ارتفاع</td>
<td>$S_{ij} = \sum_{j=1}^{n} s_{ij}$</td>
<td>ت نوع ابعاد ارتفاع</td>
</tr>
</tbody>
</table>

محاسبات ساختاری، آماده و محاسبات مربوط در نرم افزار Crandon (Ver 1.3) (آنجام گرفت، در این تحقیق، از امکان‌پذیری، Uniform angle (DBH dominance)، و ابعاد قطر برابر سینه (DBH dominance). ابعاد ارتفاع (Height dominance) به پارامتر برای کم‌سازی ت نوع موقعیت مکانی، ت نوع آمیختگی و ت نوع ابعاد قطر و ارتفاع درختان استفاده شد. همچنین با استفاده از شاخص Distance to nearest فاصله تا نزدیکترين همسایگان (n) تراکم درختان هر تيب مورد بررسی قرار گرفت. در چنديرول 1 هر کیاک شاخص‌های فوق به اختصاص توضیح داده شده است. یکی از مشابط شاخص‌های به‌کار رفته در این تحقیق بیشترتر از نظر گرفتن تعداد مختلف همسایگان باشد. اما در این تحقیق براساس تحقیقات بیشتر چهار درخت همسایگان نزدیک به درخت مرجع در نظر گرفته شد و شاخص‌های ساختاری برای هر گونه در هر تیپ جدلی جدول بررسی قرار گرفتند (9، 10، 11، 12، 13، 14، 19، و 20).

شاخص‌های زاویه یکتاخی (W1) برای محاسبه زاویه بین درختان همسایگان و مرکز (α0) و مقایسه آن با زاویه استاندارد (aθ) (د هنگام استفاده از جهل درخت همسایه 77 درجه می‌باشد) به بررسی موقعیت مکانی درختان
بررسی ساختار تیپ‌های مختلف چنگالی با استفاده از شاخص‌های...

شکل ۲. نحوه عمل روش تصحیح حاشیه نزدیک‌ترین همسایه

نیم‌شود و نیتنا در صورتی شاخص‌های مشترک برای یک گروه ساختار محاسبه می‌شود که فاصله بین n میان همسایه‌های درخت مرجع (d_l) کمتر از فاصله آن تا حاشیه قطعه نمونه (d_b) باشد (شکل ۲). (21)

نتایج
در این تحقیق با استفاده از روش تصحیح حاشیه نزدیک‌ترین همسایه تأثیر حاشیه قطعات نمونه بر تشکیل گروه‌های ساختاری اصلاح شد. در جدول ۲ عمدات گروه‌های ساختاری گونه‌های مختلف و همچنین خشکدارها، قبل و بعد از تصحیح حاشیه نشان داده شده است.

Fagus - **Carpinus - Quercus - Fagus-Carpinus**

پیگان و پردازش با ۳۵/۰ محاسبه گرد که نشان دهنده چیدمان تصادفی درخت مرجع نسبت به یکدیگر است. همچنین در هر تیپ چندین میانگین این شاخص برای گروه‌های مختلف محاسبه و نتایج حاصل از آن در جدول ۳ ارائه شد. نتایج حاصل از این شاخص نشان دهنده چیدمان کم و بیش تصادافی بارا گروه‌های مورد مطالعه می‌باشد. البته در برخی موارد نتایج مختلف به دست آمده که می‌توان با میانگین این شاخص در **Fagus-Carpinus** گونه در تیپ (d_l)/۱/۲۵ (۰/۶۵) و **Tilia begonifolia** بهتر از فاصله آن تا حاشیه قطعه نمونه (d_b) باشد. گروه ساختاری مورد بحث (گروه ساختاری ۲) در محاسبات وارد

سیوه و ارتقاع می‌پردازند. ارزش‌های این دو شاخص نیز معنی‌دار

شاخص‌های قبلی یکی از ارزش‌های صفر، هر ۰/۲۵، هر ۰/۶۵ و یا ۱ محاسبه می‌شوند (۱۳). ارزش‌های بالای این دو شاخص نشان دهنده غلیپت گونه مرجع نسبت به درختنگی همسایه می‌باشد. شاخص‌های یکی رفته در این تحقیق با نظر گرفتن فاصله بین درختنگ در ترکم چنگل مورد مطالعه، به بررسی ساختار آنها می‌پردازند. این تحقیق اشاره‌های تراکم نزدیک‌ترین همسایه‌ها (D) به‌طور مکمل با سایر شاخص‌های آن استفاده شد. میانگین این شاخص بیش از همچنین تراکم چنگل مورد مطالعه بسترگی دارد و به سادگی امکان محاسبه میانگین فاصله بین درختنگ در یک گروه ساختاری و مقایسه آن با سایر مناطق را ممکن می‌سازد (۲۲).
جدول 2: تعداد گونه‌های ساختاری قبل و بعد از تصحیح حاشیه به روش تزئین‌کننده همبسته‌بندی (بدون واحد)

<table>
<thead>
<tr>
<th>تیپ‌های مورد مطالعه</th>
<th>Carpinus-Quercus</th>
<th>Carpinus-Fagus</th>
<th>Fagus-Carpinus</th>
<th>Fagus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{1}</td>
<td>C_{2}</td>
<td>C_{3}</td>
<td>C_{4}</td>
</tr>
<tr>
<td>F. orientalis</td>
<td>45</td>
<td>101</td>
<td>221</td>
<td>378</td>
</tr>
<tr>
<td>C. betulus</td>
<td>247</td>
<td>893</td>
<td>761</td>
<td>1470</td>
</tr>
<tr>
<td>Q. castaneifolia</td>
<td>88</td>
<td>165</td>
<td>65</td>
<td>116</td>
</tr>
<tr>
<td>A. subcordata</td>
<td>44</td>
<td>98</td>
<td>70</td>
<td>151</td>
</tr>
<tr>
<td>A. velutinum</td>
<td>134</td>
<td>209</td>
<td>75</td>
<td>131</td>
</tr>
<tr>
<td>T. begonifolia</td>
<td>42</td>
<td>57</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>D. lotus</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P. communis</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U. glabra</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. terminalis</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>خشکدار</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>مجموع</td>
<td>37</td>
<td>75</td>
<td>105</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>284</td>
<td>506</td>
<td>1183</td>
<td>1500</td>
</tr>
</tbody>
</table>

جدول 3: مقادیر میانگین مشخصات برای گونه‌های درخت موجود در تیپ‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>Carpinus-Quercus</th>
<th>Carpinus-Fagus</th>
<th>Fagus-Carpinus</th>
<th>Fagus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{1}</td>
<td>C_{2}</td>
<td>C_{3}</td>
<td>C_{4}</td>
</tr>
<tr>
<td>S. terminalis</td>
<td>0.55</td>
<td>0.28</td>
<td>0.50</td>
<td>0.24</td>
</tr>
<tr>
<td>U. glabra</td>
<td>0.50</td>
<td>0.50</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>P. communis</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>D. lotus</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>T. begonifolia</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>A. subcordata</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>A. velutinum</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Q. castaneifolia</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>C. betulus</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>F. orientalis</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
</tbody>
</table>

گونه‌های مختلف نسبت به یکدیگر می‌باشند. ارزش میانگین این Carpinus-Fagus-Carpinus Fagus در تیپ Diospyros lotus هم‌چنین گونه Carpinus-Fagus در تیپ Carpinus-Quercus Fagus و Carpinus-Fagus Fagus که یکی از این دو مورد می‌باشد. شاخص آمیختگی گونه‌ای نشان‌دهنده نزدیکی آمیختگی نسبت این Carpinus-Fagus در تیپ Fagus و Carpinus-Quercus Fagus که یکی از این دو مورد می‌باشد.

که یکی از این دو مورد می‌باشد. شاخص آمیختگی گونه‌ای نشان‌دهنده نزدیکی آمیختگی نسبت این Carpinus-Fagus در تیپ Fagus و Carpinus-Quercus Fagus که یکی از این دو مورد می‌باشد.

18
چرگی موسط گونه‌های Carpinus و Fagus orientalis و Quercus در پیش‌بینی صاحب‌نظری زیاد گونه‌های cited betulus Tilia Acer velatum Alnus subcordata castaneifolia بود. اما تاکنون به‌درست آماده از Pyrus communis و beginofilia شاخه فاصله تا نیز کند تر هم‌سایه‌ها در تیپ‌های Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus به‌ترین پیام‌های 27/0/27 و 2/77 در 67/99 ماحاسبه شد که به خویی نشان‌دهنده تراکم وضعیت درختان در تیپ Carpinus-Quercus درختان موجود در تیپ‌های مذکور می‌باشد. براساس نتایج حاصل از این شاخه تیپ Fagus-Carpinus در بر داده کننده Carpinus-Quercus و تیپ Carpinus از آمیختگی به‌درست است. همچنین ارزش‌های میانگین این شاخه در گونه‌های مختلف در جدول 4 ارائه شده است. مقادیر میانگین این شاخه نشان‌دهنده آمیختگی کم گونه‌های Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus و Carpinus-Quercus باعث تب مورد بررسی است. سومین و چهارمی‌سایزی میانگین نشان‌دهنده این بود. از آموزن کا اسکار سه و چهارگی تنویع موقعیت مکانی، تنویع آمیختگی و تنویع دیگر درختان در تیپ‌های مختلف مورد مانسی قرار گرفت. در جدول 7 مقادیر سطح معنی‌داری در سطح 99 درصد برای شاخه‌های مذکور ارائه شده است. نتایج حاصل از این آموزن نشان می‌دهد که گونه‌های درختی تیپ‌های مختلف از نظر ویژگی‌های تنویع موقعیت مکانی، تنویع ابعاد درختان و تنویع ابعاد ارتفاع اخلاق معنی‌داری را نشان نمی‌دهد و تیپ‌های مختلف تناها از نظر آمیختگی گونه‌های اختلافات معنی‌داری را در سطح 99 درصد نشان دادند.

بحث

در جنگل‌داری نوین، کمی سایزی ساختار چنگال به یک دامنه...
جدول 5. مقادیر میانگین شاخص ابعاد قطر برای سیت گونه‌های درختی موجود در تپه‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>S. normalis</th>
<th>U. glabra</th>
<th>P. communis</th>
<th>D. latus</th>
<th>T. orientalis</th>
<th>A. velutinum</th>
<th>A. subcordata</th>
<th>Q. castaneifolia</th>
<th>C. betuloides</th>
<th>F. orientalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagus</td>
<td>0.22</td>
<td>0.36</td>
<td>-</td>
<td>0.32</td>
<td>0.54</td>
<td>0.39</td>
<td>0.69</td>
<td>0.27</td>
<td>0.28</td>
<td>Fagus</td>
</tr>
<tr>
<td>Fagus-Carpinus</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>0.58</td>
<td>0.21</td>
<td>0.40</td>
<td>0.58</td>
<td>0.28</td>
<td>0.21</td>
<td>Fagus-Carpinus</td>
</tr>
<tr>
<td>Carpinus-Fagus</td>
<td>0.26</td>
<td>-</td>
<td>-</td>
<td>0.58</td>
<td>0.21</td>
<td>0.40</td>
<td>0.58</td>
<td>0.28</td>
<td>0.21</td>
<td>Carpinus-Fagus</td>
</tr>
<tr>
<td>Carpinus-Quercus</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
<td>0.58</td>
<td>0.21</td>
<td>0.40</td>
<td>0.58</td>
<td>0.28</td>
<td>0.21</td>
<td>Carpinus-Quercus</td>
</tr>
</tbody>
</table>

جدول 6. مقادیر میانگین شاخص ابعاد ارتفاع گونه‌های درختی موجود در تپه‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>S. normalis</th>
<th>U. glabra</th>
<th>P. communis</th>
<th>D. latus</th>
<th>T. orientalis</th>
<th>A. velutinum</th>
<th>A. subcordata</th>
<th>Q. castaneifolia</th>
<th>C. betuloides</th>
<th>F. orientalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagus</td>
<td>0.27</td>
<td>0.55</td>
<td>-</td>
<td>0.75</td>
<td>0.39</td>
<td>0.69</td>
<td>0.33</td>
<td>0.28</td>
<td>0.32</td>
<td>Fagus</td>
</tr>
<tr>
<td>Fagus-Carpinus</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>0.39</td>
<td>0.69</td>
<td>0.33</td>
<td>0.28</td>
<td>0.32</td>
<td>Fagus-Carpinus</td>
</tr>
<tr>
<td>Carpinus-Fagus</td>
<td>0.26</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>0.39</td>
<td>0.69</td>
<td>0.33</td>
<td>0.28</td>
<td>0.32</td>
<td>Carpinus-Fagus</td>
</tr>
<tr>
<td>Carpinus-Quercus</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>0.39</td>
<td>0.69</td>
<td>0.33</td>
<td>0.28</td>
<td>0.32</td>
<td>Carpinus-Quercus</td>
</tr>
</tbody>
</table>

جدول 7. مقادیر سطح معنی‌داری شاخص‌های ساختمان (بدون واحد)

<table>
<thead>
<tr>
<th>شاخص‌های مورد مطالعه</th>
<th>ابعاد ارتفاع</th>
<th>ابعاد قطر برای سیت</th>
<th>آمپتیک</th>
<th>زاویه یکنواخت</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. orientalis</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>C. betulus</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>Q. castaneifolia</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>A. subcordata</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>A. velutinum</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>T. begonifolia</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
<tr>
<td>U. glabra</td>
<td>0.237</td>
<td>0.284</td>
<td>0.23</td>
<td>0.233</td>
</tr>
</tbody>
</table>

*: معنی‌داری در سطح 95 درصد اطمینان; **: معنی‌داری در سطح 99 درصد اطمینان
خوبی شناسه‌نگار خود اتفاق‌های مختلف خونه‌ای آن اتی. این نوع شاخص‌ها یک اثرات مناسبی در رابطه با رنگی درون گونه‌ها و بین گونه‌ها درختان به‌طور دستی کم‌زمان می‌باشد. به‌طورکلی نتایج حاصل از این Carpinus betulus و Amelanchier بالا سایر گونه‌هاست. Fagus orientalis و Carpinus آمیختگی گونه در تیپ Fagus orientalis نسبتاً بیشتر از تنها Quercus است که باعث تعادل کم‌پایه‌ای این گونه Carpinus-Fagus است. با مقایسه آمیختگی Carpinus-Quercus گونه Quercus castaneifolia و Fagus orientalis در تیپ مختلف باعث حداکثری این گونه به خوبی آشکار می‌شود. به‌طور معمول دارای آمیختگی کمیست (19). در حقیقت سومین جنبه ساختاری مورد مطالعه در این تحقیق، نشان داد که ابعاد درختان است. نتایج به دست آمده از این شاخص‌های فلط دربردارنده نشان داد که ابعاد درختان نسبت به یکدیگر است که از علت آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌باشد. مقدار میانگین آن شاخص در چهار تیپ مورد مطالعه نشان دهنده نتایجی بودند. نتایج چیدمان درختان نسبت به یکدیگر است که از علل آن می‌توان به طبیعت بودن جنگل‌های مورد مطالعه اشاره کرد. که گیا و به‌صورت کم‌زمان درختان که از گونه‌ای مادر می‌
Acer velutinum M. killed by Carpinus betulus L. is the dominant species in the forest. High pressure of Carpinus betulus L. on Acer velutinum M. is a serious problem in the forest. Fagus orientalis L., Carpinus betulus L., and Tilia begoniifolia Juss. are the main species in the forest. Their presence is considerable. A significant correlation was found between the density of Carpinus betulus L. and the pressure of Acer velutinum M. on the adjacent species. This pressure is due to the root competition and the shading effect of Carpinus betulus L. on Acer velutinum M. The results showed that the pressure of Carpinus betulus L. on Acer velutinum M. is significant in the forest.