ارزیابی کارایی انرژی و تحلیل اقتصادی تولید پیاز 
در استان خراسان رضوی

فاصله حسن زاده اول و پروری رضوایی مقدم

(تاریخ دریافت: 1391/07/22؛ تاریخ پذیرش: 1391/07/22)

چکیده

افزاری کارایی انرژی و استفاده از منابع انرژی قابل تجدید در سیستم‌های کشاورزی انتقال را راه‌یابی و پیشروی به منابع سوخت فسیلی را کاهش می‌دهد. هدف از این مطالعه، تیین میزان انرژی ورودی و خروجی در تولید محصول پیاز و انجام آنالیز‌های اقتصادی در استان خراسان رضوی بوده و به‌منظور دست‌یابی به این هدف، پروپتی‌های طراحی شده و از روش نمونه‌گیری تصادفی 55 پیاز کار در این استان انتخاب شدند. پرسته‌های ضروری در هر دو ماه‌های اردیبهشت و خرداد 1390 جمع‌آوری شدند. نتایج نشان داد که کل انرژی ورودی برای تولید پیاز در استان خراسان رضوی 98749 مگاوات پیاز بر هکتار بود و حدود 55/77 درصد از این انرژی مربوط به کتیرسپر و 17/4/3 درصد به کود تیتروژن پایه. میانگین عملکرد پیاز در مزارع تحت آبیاری 73272 کیلوگرم بر هکتار بوده و آنرژی خالص و بهره‌وری انرژی بهترین 1888 مگاوات پر هکتار و 74/0 کیلوگرم بر مگاوات و نسبت انرژی خروجی به انرژی ورودی 1/19 بود. نسبت انرژی خروجی به ورودی پایین در این مسئله استفاده می‌دهد که استفاده شده از منابع انرژی تولید پیاز از افزایش در تولید بهره‌های می‌باشد. درصد از کل انرژی ورودی، انرژی قابل تجدید (یروری انتقال) کود دامی آب آبیاری و 37/3 درصد آن از انرژی غیرقابل تجدید (مابین لایه، سوخت گازولیه، کودهای شیمیایی، سوخت و الکتریسیته) بود. آنالیز هزینه نشان داد که کل هزینه تولید برای یک هکتار تولید پیاز 79248789 ریال بود. نسبت قابلیت به هزینه در این مسئله 1/67 بوده است. با توجه این اگرچه تولید پیاز در استان خراسان رضوی کارایی انرژی پایینی دارد اما از نظر اقتصادی دارای سود قابل قبول است.

واژه‌های کلیدی: بیلان انرژی، بهره‌وری انرژی، انرژی ورودی و خروجی

1. کروه وزارت، دانشکده کشاورزی، دانشگاه فردوسی مشهد
fa_ha140@stu.um.ac.ir

* مسئول مکانیابی: پست الکترونیکی
مقدمه
پیاز (Allium cepa L.) گیاهی است از خانواده...

شرايط، آناناليز انرژي و روستي و خروجي به سیستم‌های کشاورزی برای سیاست‌گذاران و تولیدکنندگان این امکان را
فرآهم می‌سازد که اثرات متقابل مصرف انرژي و صرفه
اقتصادی را در تولید یک محصول بررسی نماید (22).

مطالعات زراعي در زمينه کاربی و پیمان انرژي در تولید
محصولات کشاورزي در سرناصعر جهان صورت گرفته است.
به عنوان مثال در ايران کاربی انرژي گندم دم و آبي (8) جو
(7) ذرت (19) کاز (15)، سویا (16)، سیب انگوری (12)، خیار
و کوکزپاکی گلخانه‌ای (6) و کیوی (10)...

موردهای گزارش اداره مزارع و کشاورزی در مورد یافته‌ها تحقیقات قبل تولید
انجام نشده است. موردهای انرژي تولید پیاژ یا کاربیک
زمین‌ها با انرژي کاربیک و مقایسه آن با سیستم تولید
مکانیزه‌ای را در امریکا را بررسی نموده و نتیجه گرفت که سیستم از
بپیاژ کاربیک در تولید پیاژ نه‌تنها عملکرد را افزایش داده,
بلکه سبب کاهش مصرف سوخته‌ها و افزایش تولید پاژه می‌گردد.

هدف از این تحقیق، تعیین اثر انرژی و روستی و خروجی به ازای
یک هکتار تولید پیاژ، محاسبه کاربی مصرف انرژی، بررسی
اشکال مختلف انرژی روستی و همچنین تجزیه و تحلیل‌های
اقتصادی تولید پیاژ در استان خراسان رضوی بود.

موانع و روش‌ها

این مطالعه در 55 مزارع پیاژ در استان خراسان رضوی با عرض
جغرافیایی ۳۶°۵۶ شمالي و طول جغرافیایی ۵۹°۲۶ شرقی و
ارتفاع ۹۶۹ متر از سطح دریا انجام گردید. مساحت این استان
۵۲۸۲ کیلومتر مربع و سطح زمین‌های زیر کشت پیاژ
۲۱۲۰ هکتار است. متوسط اندازه زمين‌ها ۵۲/۴ هکتار و زمین‌های زیر
کشت پیاژ به درصد از کل زمین‌های کشاورزی منطقه‌ای را
شمل می‌شناسند. ارتفاع اصلی پیاژ کشت شده در منطقه، زرگان و
کلکن‌ود سیب انگوری و مصرف انرژی به روش پرشه نامه
بچه به چهار از تولیدکننده پیاژ در سال ۱۳۹۰ که حدود
۱۳۰۱ که حدود

کشاورزی کاربی و سالدوم / شماره سوم / بهار ۱۳۹۲
ارزیابی کارایی انرژی و تحلیل اقتصادی تولید پیاز (Allium cepa L.)

6000 نفر بودند. این نماشگان شماره تاکیدی می‌تواند مالکین شرکت‌های بخشهای انتخاب شده تاکیدی

اطلاعاتی لازم در این بخش از سازمان‌های جهاد کشاورزی استان خراسان رضوی گزارش کردی. به‌منظور تخمین پرداخت‌های طراحی‌شده از روش نمونه‌گیری تصادفی ساده در محل‌های در

پنج کیلویی استان استفاده شد. این روش نمونه‌گیری در وضعیت برنامه‌گذاری و کمک‌کننده اصلی نمونه‌گیری قابل استفاده و قابل تعمیم به کل جامعه است.

تعداد نمونه طبق معادله ۱ تعیین گردید:

\[
N = \frac{N_x s^2 (1 - \pi)^2}{(N - 1) d^2 + s^2 (\pi^2 - 1)}
\]

در این فرمول، \(N_x\) تعداد نمونه مورد نظر و \(N\) تعداد کل جمع‌اکت هدف‌ی بررسی با در نظر گرفتن صفت مورد مطالعه در یکین نتیجه‌ی کارایی انرژی

در این فرمول، ۴/۹۶ به‌دست می‌آید و ۵/۵ تعداد این فرمول تعداد نمونه (پیازکار) لازم به‌جای تخمین پرداخت‌های با ۴۵/۱۷۵ نفر به‌دست آمد که جهت

از گونه‌ای Ds محاسبات این رسم به هر ۵۵ نفر پیازکار افزایش یافت.

کارایی انرژی مزار تولید پیاز توسط کارا انرژی ورودی

(نیروی انسانی، میان‌سینات، وزن‌گذاری، کود، محاسباتی و دیگر

شیمیایی، کود دامی، سوخت کارا انرژی و

و ۱۴). انرژی هورودی و خروجی و معادل این انرژی‌ها برحسب مهاکاوی در جدول ۱ از داده‌های است. اطلاعات

اولیه شامل انرژی هورودی و کمک‌کننده پیاز از پرداخت‌های با

Excel انتقال باتری آنالیز گردید. برنامه‌های

و خروجی (جدول ۱) کل انرژی ورودی و

ارزیابی انرژی و تحلیل اقتصادی تولید پیاز (Allium cepa L.)
<table>
<thead>
<tr>
<th>Particulars (unit)</th>
<th>Energy equivalent (MJ unit⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Human labor (h)</td>
<td>1.96</td>
<td>Pishgar Komleh et al., 2011</td>
</tr>
<tr>
<td>1- Machinery (h)</td>
<td>62.7</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>1- Diesel fuel (L)</td>
<td>50.2</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>2- Chemical fertilizers (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Nitrogen (N)</td>
<td>66.1</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>1- Phosphate (P2O5)</td>
<td>12.4</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>1- Potassium (K2O)</td>
<td>11.2</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>3- Manure (t)</td>
<td>303</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>4- Chemicals (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Herbicide</td>
<td>238</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>2- Insecticide</td>
<td>101</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>3- Fungicide</td>
<td>216</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>4- Water for irrigation (m³)</td>
<td>1.02</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>5- Electricity (kWh)</td>
<td>3.60</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>6- Seeds (onion) (kg)</td>
<td>14.7</td>
<td>Ozkan et al., 2004</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Onion Yield (fresh weight) (kg)</td>
<td>1.60</td>
<td>Ozkan et al., 2004</td>
</tr>
</tbody>
</table>
جدول 2. عملیات مدیریتی برای تولید پیاز

<table>
<thead>
<tr>
<th>عملیات مدیریتی</th>
<th>تولید پیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>زرگان، گلدین</td>
<td>Zarfam, Golden</td>
</tr>
<tr>
<td>نام رقم</td>
<td>نام رقم</td>
</tr>
<tr>
<td>علیه آماده‌سازی زمین توسط تراکتور مسی‌فروکس 285 MF 75 hp Land preparation tractor used:</td>
<td></td>
</tr>
<tr>
<td>ژمان آماده‌سازی زمین</td>
<td>Land preparation period</td>
</tr>
<tr>
<td>متوسط تعداد دفعات خشمه</td>
<td>Average tilling number</td>
</tr>
<tr>
<td>زمان کشت</td>
<td>زمان کشت</td>
</tr>
<tr>
<td>نام آبار</td>
<td>نام آبار</td>
</tr>
<tr>
<td>متوسط تعداد دفعات آبیاری</td>
<td>Average number of irrigation</td>
</tr>
<tr>
<td>زمان سیب‌پاشی (علف‌کش، آفت‌کش و فارچ کش)</td>
<td>زمان سیب‌پاشی (علف‌کش، آفت‌کش و فارچ کش)</td>
</tr>
<tr>
<td>متوسط تعداد دفعات سیب‌پاشی</td>
<td>Average number of spraying</td>
</tr>
<tr>
<td>زمان برداشت</td>
<td>زمان برداشت</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتایج و بحث
منشأهای و عملیات کشت پیاز

زمین و متوسط تعداد عملیات مدیریتی تولید پیاز از شکم و آماده‌سازی بذر تا برداشت محصول در جدول 2 ارائه گردیده است. شکم و آماده‌سازی بذر تا برداشت در طی ماه‌های بهمن و اسفند و اکثری توسط تراکتور مسی‌فروکس 285 B من 25 اسب بخار انجام می‌شود. کاشت بذر در اسفند و اواخر فروردین ماه انجام می‌گردد. کودتیه قبل از کاشت از آبان ماه تا اسفند ماه صورت می‌پذیرد. سایر عملیات مدیریتی در مرحله داشت از اسفند ماه تا مهر ماه ادامه داشته و عملیات برداشت در طی ماه‌های مهر و آبان انجام می‌گیرد. زمان کودتیه قبل از کاشت از اسفند تا خرداد به طول می‌انجامد.
جدول ۳: مصرف انرژی و ارتباط بین انرژی ورودی و خروجی در تولید محصول پیاز

<table>
<thead>
<tr>
<th>انرژی</th>
<th>مقدار اطلاعی واحد سطح (مقدار/هکتار)</th>
<th>انرژی حاصل از انرژی (مقدار/هکتار)</th>
<th>درصد از کل انرژی (ورودی) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ورودی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تبادلات انرژی (ساعت)</td>
<td>۱۶۹۴</td>
<td>۱.۹۶</td>
<td>۳۳۲۰</td>
</tr>
<tr>
<td>بشری (ساع)</td>
<td>۷.۴۳</td>
<td>۶۲.۷</td>
<td>۴۶۶</td>
</tr>
<tr>
<td>موانع/آلا (ساع)</td>
<td>۱۲۷</td>
<td>۵۰.۲</td>
<td>۶۳۹۳</td>
</tr>
<tr>
<td>سوخت کارولین (لیتر)</td>
<td>۲۱۹</td>
<td>۶۶.۱</td>
<td>۱۴۴۸۳</td>
</tr>
<tr>
<td>دیزل (لیتر)</td>
<td>۱۸۳</td>
<td>۱۲.۴</td>
<td>۲۲۷۹</td>
</tr>
<tr>
<td>فسفر (کیلوگرم)</td>
<td>۱۰۹</td>
<td>۱۱.۴</td>
<td>۱۲۱۳</td>
</tr>
<tr>
<td>کلسیم (کیلوگرم)</td>
<td>۲۲.۱</td>
<td>۳۰۳</td>
<td>۶۷۰۴</td>
</tr>
<tr>
<td>آب اپارا (مترمکعب)</td>
<td>۱۱۹۳۵</td>
<td>۱.۰۲</td>
<td>۱۲۱۷۴</td>
</tr>
<tr>
<td>کمک‌رسانگی (رایگان)</td>
<td>۱۳۹۱۵</td>
<td>۳.۶۰</td>
<td>۵۰۰۹۲</td>
</tr>
<tr>
<td>برق (کیلووات/ساعت)</td>
<td>۱۱.۱</td>
<td>۱۴.۷</td>
<td>۱۶۳</td>
</tr>
<tr>
<td>کل انرژی ورودی (مگاژ)</td>
<td>۹۸۴۷۹</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>۲- خروجی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نتایج طعمه های پیاز (وزن تیز) (کیلوگرم)</td>
<td>۷۳۲۲۷</td>
<td>۱.۶۰</td>
<td>۱۱۷۱۶۴</td>
</tr>
<tr>
<td>نتایج طعمه خریدار (مگاژ)</td>
<td></td>
<td></td>
<td>۱۱۷۱۶۴</td>
</tr>
<tr>
<td>کارایی انرژی</td>
<td></td>
<td></td>
<td>۱.۱۹</td>
</tr>
<tr>
<td>انرژی/ئیکس</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مصرف انسانی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بیمارس آب از دی‌قرکسی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| از بخشی؛ این و و حمل و نقل و انرژی الکتریسیته بیشتر برای
حذف رضوی سهم منابع انرژی تجدیدپذیر حدود 2/5 برای بیشتر از منابع انرژی رودی تجدیدپذیر بود. در رسانه تولید سایر محصولات کشاورزی در ایران روند مشابه دیده شده است (7). از این نکات می‌توان به وجود انرژی تجدیدپذیر اشاره نمود. لازم به ذکر نیست که در جدول 4 آمده است، بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهره‌وری انرژی در مزراع تولید پیاز در استان هرمزگان، میزان بهره‌وری انرژی انرژی مصرف و انرژی خالص در جدول 4 آمده است. بهر...
جدول ۵. کل انرژی ورودی به اشکال مستقیم، غیرمستقیم، قابل تجدید و غیرقابل تجدید در تولید محصول پیاز

<table>
<thead>
<tr>
<th>شکل انرژی (مگاژول/ها)</th>
<th>پیاز</th>
<th>درصد %</th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی مستقیم</td>
<td>71979</td>
<td>73.1</td>
</tr>
<tr>
<td>Direct energy</td>
<td>26501</td>
<td>26.9</td>
</tr>
<tr>
<td>انرژی غیرمستقیم</td>
<td>22361</td>
<td>22.7</td>
</tr>
<tr>
<td>Indirect energy</td>
<td>76119</td>
<td>77.3</td>
</tr>
<tr>
<td>انرژی قابل تجدید</td>
<td>98479</td>
<td>100</td>
</tr>
<tr>
<td>Renewable energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>انرژی غیرقابل تجدید</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-renewable energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل انرژی ورودی</td>
<td>51368</td>
<td>100</td>
</tr>
<tr>
<td>Total energy input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

این جدول نشان می‌دهد که تولید پیاز شامل ۵۱۳۶۸ میلیون وات است.

تولید ارزش افزایش یافته و کل هزینه‌های تولید در این برنامه ۱۳۰۶۰۸۲۹ ریال و نسبت فاصله بین هزینه به هزینه در تولید محصول پیاز ۱/۵۵ به دست آمد (جدول ۶). نسبت فاصله بین هزینه به هزینه در سایر محصولات زراعی به ایران مشابه بود. هزینه در تولید محصولات گلخانه‌ای به هزینه در گندم و دم و آبی به ترتیب ۲/۴۵ و ۱/۹۷۵ و ۰/۸۷ (۰/۸) درصد، تعداد گلخانه‌ای به حساب می‌آمد (۱۲). در سیستم زمینی (۱/۷) و خیار (۱/۸۵) به دست آمد که می‌توان تجربه گرفت تولید محصولات گلخانه‌ای به عنوان یکی از مهم‌ترین منابع دیگر می‌تواند تولید محصولات گلخانه‌ای باید کنترل بیشتری داشته باشد.

در تنظیم‌های اقتصادی تولید پیاز ارزش افزایش یافته تولید پیاز ۱۳۰۶۰۸۲۹ ریال و نسبت فاصله بین هزینه به هزینه در تولید محصول پیاز ۱/۵۵ به دست آمد (جدول ۶). نسبت فاصله بین هزینه به هزینه در سایر محصولات زراعی به ایران مشابه بود. هزینه در تولید محصولات گلخانه‌ای به هزینه در گندم و دم و آبی به ترتیب ۲/۴۵ و ۱/۹۷۵ و ۰/۸۷ (۰/۸) درصد، تعداد گلخانه‌ای به حساب می‌آمد (۱۲). در سیستم زمینی (۱/۷) و خیار (۱/۸۵) به دست آمد که می‌توان تجربه گرفت تولید محصولات گلخانه‌ای به عنوان یکی از مهم‌ترین منابع دیگر می‌تواند تولید محصولات گلخانه‌ای باید کنترل بیشتری داشته باشد.

می‌توان تجربه گرفت تولید محصولات گلخانه‌ای به عنوان یکی از مهم‌ترین منابع دیگر می‌تواند تولید محصولات گلخانه‌ای باید کنترل بیشتری داشته باشد.

در تنظیم‌های اقتصادی تولید پیاز ارزش افزایش یافته تولید پیاز ۱۳۰۶۰۸۲۹ ریال و نسبت فاصله بین هزینه به هزینه در تولید محصول پیاز ۱/۵۵ به دست آمده.
جدول ۶. تحلیل اقتصادی تولید پیاز

<table>
<thead>
<tr>
<th>اجزاء هزینه و بازگشت</th>
<th>ارزش</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد (کیلوگرم/هکتار)</td>
<td>73227</td>
</tr>
<tr>
<td>قیمت فروش (ریال/کیلوگرم)</td>
<td>1785</td>
</tr>
<tr>
<td>هزینه تأمین تولید (ریال/هکتار)</td>
<td>130743967</td>
</tr>
<tr>
<td>هزینه تأمین تولید (ریال/هکتار) (rial ha⁻¹)</td>
<td>57390181</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/هکتار)</td>
<td>21872727</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/کیلوگرم)</td>
<td>79262908</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/کیلوگرم) (rial ha⁻¹)</td>
<td>1082</td>
</tr>
<tr>
<td>بازگشت ناخالص (ریال/هکتار)</td>
<td>73353786</td>
</tr>
<tr>
<td>بازگشت ناخالص (ریال/کیلوگرم) (rial ha⁻¹)</td>
<td>51481059</td>
</tr>
<tr>
<td>نسبت فاصله به هزینه</td>
<td>1.65</td>
</tr>
</tbody>
</table>

متابع‌وارد استفاده