ارزیابی کارایی انرژی و تحلیل اقتصادی تولید پیاز

در استان خراسان رضوی

فاطمه حسن زاده اول و پرویز پژوهانی مقدم

(تاریخ دریافت: 1391/06/27؛ تاریخ پذیرش: 1391/12/22)

چکیده

از افزایش کارایی انرژی و استفاده از منابع انرژی قابل تجدید در سیستم‌های کشاورزی، راه‌های وابستگی به منابع سوخت‌های کاهش می‌دهد. هدف از این مطالعه، تعیین میزان انرژی ورودی و خروجی در تولید محصول پیاز و انجام آنالیز‌های اقتصادی در استان خراسان رضوی بود. به‌منظور دست‌یافتن به این هدف، پرسشنامه‌های طراحی شد و به روش نمونه‌گیری تصادفی 55 پیازکار در این استان انتخاب شدند. پرسشنامه‌های به‌صورت صورتی و به‌چهار فرم‌های E2، E3 و E4 با استفاده از آزمون‌های هندسه و تحلیل تاریخی نشان داد که کل انرژی ورودی برای تولید پیاز در استان خراسان رضوی 98789 مگاوات بر هکتار بود. حدود 95% از این انرژی مربوط به الکتریسیته و 1/7/10% به‌کمک بکار رفته کود نیتروژن بود. میانگین عملکرد پیاز در مزارع تحت آب‌یاری 72374 مگاوات بر هکتار و 1/474 کیلوگرم بر مگاوات بود. نسبت انرژی خروجی به ورودی پایینی در این سیستم نشان می‌دهد که استفاده شده از منابع در تولید پیاز از افزایش در تولید نهایی محصول بی‌باشد. درصد از کل انرژی ورودی، انرژی قابل تجدید (بیروی انناتی، کود دامی آب آبیاری و بذر منسوب) و 7/3 درصد آن، انرژی غیرقابل تجدید (ماسیف آلت، سوخت‌های بازگذاری، کودهای شیمیایی، سیستم و الکتریسیته) بود. آنالیز هزینه‌های نشان داد که کل هزینه‌های تولید برای یک هکتار تولید پیاز 7864298 ریال بود. نسبت فاقدی به هزینه در این سیستم 1/75/ به‌دست آمد. نتایج این اگرچه تولید پیاز در استان خراسان رضوی کارایی انرژی پایینی دارد اما از نظر اقتصادی دارای سود قابل قبول است.

واژه‌های کلیدی: بیلار انرژی، پیاز که، انرژی ورودی و خروجی

1. گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد
fa_ha140@stu.um.ac.ir

* مسئول مکاتبات، پست الکترونیکی: *
مقدمه

پیاز (Allium cepa L.) گیاهی است از خانواده Alliaceae که علاوه بر استفاده خوراکی و به عنوان پاشانی عسلی بکی از مهاریگیان دارویی حاوی ترکیبات سولفور و سیلن بوده و دارای خواص درمانی پیشگیری از بیماریهای قلبی-عروقی، پایین آورنده کلسیم خون و مانع از تصحل شرايين می‌باشد. همچنین در درمان فقیدان استفاده سرماخوردگی، سرطان، اسهال، درانتری، و دیب دیدار استفاده قرار گیرد و منشا آن نواحي غرب میانتراته و خوارزمیه استان (21).

کشت بومی (1). سطح زیر کشت پیاز در جهان حدود ۳/۰ میلیون هکتار و در ایران حدود ۷۲ هزار هکتار می‌باشد. این در حالت است که علائم چندان نشان نمی‌دهد و در ایران به اندازه ۲۰۰۸ کیلو تولید و جهان با ۶۲۸۸ کیلو تولید شده است (۶). با این حال کشت با همه واریations شرایط آب و هوا ایرانی و عملکرد بالایی در بهبود می‌باشد. همچنین به دلیل استفاده خوب‌سیره و فرو روان آن در ایران، توییب پیاز مصرفی به‌نظر می‌رسد.

استفاده کارآمد از انرژی یکی از اجرای اصلی کشاورزی پایدار است (۵). استفاده از انرژی در کشاورزی با افرازی می‌تواند در جمعیت بهبودی در انرژی قابل کشت افرازی سطح مناسبی کشاورزی سبب بهداشت همگانی و متعادل وزن‌های افرازی می‌باشد. (۸). باز می‌توان به افرازی تولید گذا سبب افرازی استفاده کرده‌ایم بایستی با مشابه افرازی‌های شیب‌آمیز، افرازی‌های ماسین، کشاورزی معنی‌داری، شتاب‌آوری و دیگر انرژی‌های شیب‌آمیز است. این دویگی استفاده شدید از این منابع به عنوان نهاده‌های ورودی به سیستم‌های کشاورزی سبب مشکلات تهیه‌یابی برای بهداشت همگانی و محیط زیست می‌شود. افرازی کاراپیانی در تولید مناسب غذایی و دارویی و ترویج کشاورزی پایدار به عنوان پیش‌بینی تولید مشکلات زیست محیطی را کاهش داده، از زوال منابع یافتنی جلوگیری نموده و می‌شود به صرفه‌مندی‌های ۴، ۱۹ و ۲۰.

می‌توان به افرازی‌های ارزی در جهان همچنین ایران در سال‌های اخیر روند رو به افزایش دارد و اخیراً کشاورزان انرژی برای راه‌حل می‌پردازند. به‌طوری‌که را جهت تولید محصولات غذایی به‌کار می‌گیرند (۲). در این‌
ارزیابی کارایی انرژی و تحلیل اقتصادی توپیزی

... (Allium cepa L.)

در این پژوهش، انرژی و تعداد نمونه توسط Excel مدل شیمیایی کاربردی و کاربردی دیگر به منظور تحلیل‌های اقتصادی و محاسبه نتایج استفاده می‌شود. برای این منظور، نمونه‌هایی از انرژی و لایه‌های مختلف کارایی انرژی و تعداد نمونه توسط Excel مدل شیمیایی کاربردی و کاربردی دیگر به منظور تحلیل‌های اقتصادی و محاسبه نتایج استفاده می‌شود.

در این پژوهش، انرژی و تعداد نمونه توسط Excel مدل شیمیایی کاربردی و کاربردی دیگر به منظور تحلیل‌های اقتصادی و محاسبه نتایج استفاده می‌شود. برای این منظور، نمونه‌هایی از انرژی و لایه‌های مختلف کارایی انرژی و تعداد نمونه توسط Excel مدل شیمیایی کاربردی و کاربردی دیگر به منظور تحلیل‌های اقتصادی و محاسبه نتایج استفاده می‌شود. برای این منظور، نمونه‌هایی از انرژی و لایه‌های مختلف کارایی انرژی و تعداد نمونه توسط Excel مدل شیمیایی کاربردی و کاربردی دیگر به منظور تحلیل‌های اقتصادی و محاسبه نتایج استفاده می‌شود.
جدول ۱. معادل انرژی ورودی و خروجی در تولید محصولات کشاورزی

<table>
<thead>
<tr>
<th>مشخصات (واحد)</th>
<th>معادل انرژی (مگاژول/واحد)</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- ورودی‌ها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۱- نیروی انسانی (ساعت)</td>
<td>۱.۹۶</td>
<td>Pishgar Komleh et al., 2011</td>
</tr>
<tr>
<td>۱- Human labor (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۲- ماسین‌آلات (ساعت)</td>
<td>۶۲.۷</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>۱- ۱- Machinery (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۲- ۱- ۳- سوخت گاز‌ولی (لیتر)</td>
<td>۵۰.۲</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>۱- Diesel fuel (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۴- ۱- کودهای شیمیایی (کیلوگرم)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- Chemical fertilizers (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۱- ۱- ۱- N- نیترژن</td>
<td>۶۶.۱</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱- ۱- ۱- ۴- ۱- Nitrogen (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۴- ۲- فسفر</td>
<td>۱۲.۴</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱- ۱- ۴- ۴- Phosphate (P2O5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۴- ۳- کلسیم</td>
<td>۱۱.۲</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱- ۱- ۴- ۳- Potassium (K2O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۵- ضایعات (تن)</td>
<td>۳۰۳</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱- ۱- Manure (t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۶- عصاره‌کاری</td>
<td>۲۳۸</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱- ۱- Chemicals (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۶- ۱- علوفکش</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۶- ۲- حشره‌کش</td>
<td>۱۰۱</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱- ۱- ۶- ۲- Insecticide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۶- ۳- فارمکن</td>
<td>۲۱۶</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱- ۱- ۶- ۳- Fungicide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۷- آب آبایی (مترمکعب)</td>
<td>۱.۰۲</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>۱- ۱- ۷- Water for irrigation (m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۸- کریستال (کیلووارت ساعت)</td>
<td>۳.۶۰</td>
<td>Ghorbani et al., 2011</td>
</tr>
<tr>
<td>۱- ۱- ۸- Electricity (kWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- ۱- ۹- کیلوگرم (وزن تراشی)</td>
<td>۱۴.۷</td>
<td>Ozkan et al., 2004</td>
</tr>
<tr>
<td>۱- ۱- ۹- Seeds (onion) (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱- خروجی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲- Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲- ۱- ۱- ۱- ۱- ۱- مقدار پیاز (وزن تراشی) (kg)</td>
<td>۱.۶۰</td>
<td>Ozkan et al., 2004</td>
</tr>
<tr>
<td>۲- ۱- ۱- ۱- Onion Yield</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲. عملیات مدیریتی برای تولید پیاز

<table>
<thead>
<tr>
<th>تولید پیاز</th>
<th>Onion production</th>
</tr>
</thead>
<tbody>
<tr>
<td>زرگان، گلدن</td>
<td>Zarfam, Golden</td>
</tr>
<tr>
<td>مصرف عمیق، دسکنگی و مالکشن</td>
<td>Moldboard plow, disc harrows, land leveler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فصل/مسیر</th>
<th>اسفند - فروردین</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف آب</td>
<td>March - April</td>
</tr>
<tr>
<td>Tilling</td>
<td>4.6</td>
</tr>
<tr>
<td>اسفند - اسفند</td>
<td>March - June</td>
</tr>
<tr>
<td>Fertilization</td>
<td>18.2</td>
</tr>
<tr>
<td>فروردین - مهر</td>
<td>April - October</td>
</tr>
<tr>
<td>Spraying (Herbicide, pesticide & Fungicide)</td>
<td>6.2</td>
</tr>
<tr>
<td>آبان - آبان</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فصل/مسیر</th>
<th>اسفند - فروردین</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرمت و تعمیر دفاعی کودکه</td>
<td>۴.۶</td>
</tr>
<tr>
<td>پیاز</td>
<td>بود</td>
</tr>
<tr>
<td>تولید</td>
<td>کود کرده دسته مورد استفاده به‌صورت بی‌بود</td>
</tr>
<tr>
<td>کود فسفر از نوع دی</td>
<td>۴.۶</td>
</tr>
<tr>
<td>آمونیوم فسفات و سوی سیستمی ترکیب و کود پیامبی</td>
<td>۴.۶</td>
</tr>
<tr>
<td>سیستمی محصول در جدول ۲ ارائه</td>
<td>۴.۶</td>
</tr>
<tr>
<td>فروردنی تا مهر انجام می‌شود</td>
<td>۴.۶</td>
</tr>
<tr>
<td>عملیات سیستمی شامل استفاده</td>
<td>۴.۶</td>
</tr>
<tr>
<td>از علف کش، آفتکش و قارچ کش</td>
<td>۴.۶</td>
</tr>
<tr>
<td>از فروردنی تا مهر انجام</td>
<td>۴.۶</td>
</tr>
<tr>
<td>می‌گیرد و متوسط تعداد دفاعی سیستمی</td>
<td>۴.۶</td>
</tr>
<tr>
<td>بود (جدول ۲)</td>
<td>۴.۶</td>
</tr>
</tbody>
</table>

متوسط تعداد دفاعی کودکه (قبل و بعد از کاشت)، بود.

تولید پیاز

تولید پیاز

نتایج این بررسی نشان داد که ارزیابی ورودی در پیک هکتار
برابر با ۴۹۷۶۹۹ مگاژول، بود که از این میزان اکثریتی با
برابر با ۵۰۵۷۵ مگاژول، بیشترین ارزیابی ورودی (۴.۶/۵۰۵۷۵) از کل

نتایج ارزیابی انرژی و خروجی در تولید پیاز

نتایج این بررسی نشان داد که ارزیابی ورودی در پیک هکتار
برابر با ۴۹۷۶۹۹ مگاژول، بود که از این میزان اکثریتی با
برابر با ۵۰۵۷۵ مگاژول، بیشترین ارزیابی ورودی (۴.۶/۵۰۵۷۵) از کل
جدول 3. مصرف انرژی و ارتباط بين انرژی ورودی و خروجی در تولید محصول پیاز

<table>
<thead>
<tr>
<th>انرژی Energy</th>
<th>مقدار به ارزش واحد سطح (مقدار (مگآنت کاری))</th>
<th>انرژی equivalent (مگآنت کاری)</th>
<th>کل انرژی (مگآنت کاری)</th>
<th>درصد از کل انرژی (ورودی) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیاز (ساعت)</td>
<td>1694</td>
<td>1.96</td>
<td>3320</td>
<td>3.37</td>
</tr>
<tr>
<td>ماسینه (ساعت)</td>
<td>7.43</td>
<td>62.7</td>
<td>466</td>
<td>0.47</td>
</tr>
<tr>
<td>ماشین جریان (ساعت)</td>
<td>127</td>
<td>50.2</td>
<td>6393</td>
<td>6.49</td>
</tr>
<tr>
<td>نیرو (کیلوگرم)</td>
<td>219</td>
<td>66.1</td>
<td>14483</td>
<td>14.7</td>
</tr>
<tr>
<td>سفیدر (کیلوگرم)</td>
<td>183</td>
<td>12.4</td>
<td>2279</td>
<td>2.31</td>
</tr>
<tr>
<td>نیتروژن (N) (kg)</td>
<td>109</td>
<td>11.2</td>
<td>1213</td>
<td>1.23</td>
</tr>
<tr>
<td>علف کشت (کیلوگرم)</td>
<td>22.1</td>
<td>303</td>
<td>6704</td>
<td>6.81</td>
</tr>
<tr>
<td>مانور (t)</td>
<td>2.02</td>
<td>238</td>
<td>481</td>
<td>0.49</td>
</tr>
<tr>
<td>حشره کن (کیلوگرم)</td>
<td>3.55</td>
<td>101</td>
<td>360</td>
<td>0.37</td>
</tr>
<tr>
<td>اسیدن (کیلوگرم)</td>
<td>1.63</td>
<td>216</td>
<td>351</td>
<td>0.36</td>
</tr>
<tr>
<td>آب آبیاری (مکعب)</td>
<td>11935</td>
<td>1.02</td>
<td>12174</td>
<td>12.4</td>
</tr>
<tr>
<td>کل انرژی ورودی (مکاژول)</td>
<td>13915</td>
<td>3.60</td>
<td>50092</td>
<td>50.9</td>
</tr>
<tr>
<td>کل انرژی ورودی (مکاژول)</td>
<td>11.1</td>
<td>14.7</td>
<td>163</td>
<td>0.17</td>
</tr>
<tr>
<td>کل انرژی ورودی (مکاژول)</td>
<td>73227</td>
<td>1.60</td>
<td>117164</td>
<td>100</td>
</tr>
<tr>
<td>کل انرژی خروجی (مکاژول)</td>
<td>117164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل انرژی خروجی (مکاژول)</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل انرژی خروجی (مکاژول)</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بیشتری از پیاز در آب باز Bach ندارند (جدول 3) و بعد از آن کود نیتروژن (17/4)، آب آبیاری (1/3/21/24/16/1)؛ کود دامی (18/6/1) و سفیدر (کیلوگرم) (4/29/8/1) قرار داشت. سفیدر (کیلوگرم) مصرفی در تولید پیاز عبارت بود از سوخت تراکتور. بیشتری از پیاز از بخش چاهها و حمل و نقل و انرژی الکتریسیته بیشتر برای
جدول 4: نسبت انرژی و خروجی در تولید محصول پیاز

<table>
<thead>
<tr>
<th>عناصر</th>
<th>واحد</th>
<th>پیاز (Onion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی ورودی</td>
<td>MJ ha⁻¹</td>
<td>98479</td>
</tr>
<tr>
<td>انرژی خروجی</td>
<td>MJ ha⁻¹</td>
<td>117164</td>
</tr>
<tr>
<td>کیلوگرم مکاوان (صلحیت)</td>
<td>kg ha⁻¹</td>
<td>73227</td>
</tr>
<tr>
<td>انرژی مصرف انرژی</td>
<td></td>
<td>1.19</td>
</tr>
<tr>
<td>انرژی نیتروس</td>
<td>kg MJ⁻¹</td>
<td>0.74</td>
</tr>
<tr>
<td>انرژی خاص</td>
<td>MJ ha⁻¹</td>
<td>1345</td>
</tr>
<tr>
<td>انرژی خاص</td>
<td>MJ ha⁻¹</td>
<td>18684</td>
</tr>
</tbody>
</table>

مصرف انرژی پیاز 1/19 بود (جدول 4) با توجه به کمبود آب و پایین بودن سفره‌های آب زیرزمینی در منطقه مورد مطالعه و برعین آن مصرف انرژی زیاد کریستالیسته برای بهره‌برداری آب از چاه‌ها بایستی به‌پایین آن در تولید محصول پیاز انجام گیرد تا این طریق علائم برو پایداری سفره‌های آب زیرزمینی انرژی ورودی الکتریسیته و آب آبیاری به سیستم کاهش و در نتیجه کارایی مصرف انرژی افزایش یابد. به‌پایان کارایی آبیاری هر متر مربع درون فضایی شیمیایی منبع آن در افزایش کارایی انرژی در سیستم‌های کشاورزی ایران داشته باشد (8).

به‌پایان نیز و اکثریت (2) محصولاتی که در ایران را 2/07 تا 2/08 در هکتار و کارایی انرژی مزرعه تولید پایین را افزایش می‌دهد.

معیارهای کارایی انرژی

رازهای بهره‌برداری آب از چاه‌ها در راستای کاهش مصرف انرژی در مزرعه پیاز در استان خراسان رضوی، که میزان بهره‌وری انرژی انرژی مصرف انرژی خالص در 1/87 به‌دست آمد که نسبت به سایر

محصولات زراعی کشور ماندگد (8) جو (7)، عضو (7) کلرول (1/7) و بایپاسیمی (2/7) با لیزر و کشور امکان‌پذیری به دلیل انرژی

با پایین بودن میانگین انرژی مصرف و انرژی خالص در سیستم‌های کشاورزی ایران سالهای 1385-1390 هر تن در هکتار و کارایی انرژی مزرعه تولید پایین را افزایش می‌دهد.
جدول 5: کل انرژی ورودی به اشکال مختلف، غیرمستقیم، تابی تجدید و غیرقابل تجدید در تولید محصول یپاز

شکل انرژی (مگاوات/هکتار)	پیاز	درصد	%
انرژی مستقیم	71979	73.1	
Direct energy	26501	26.9	
انرژی غیرمستقیم	22361	22.7	
Renewable energy	76119	77.3	
Non-renewable energy	98479	100	
Total energy input			

این تابیت بلندترین از کل هزینه‌های تولید است و به عنوان مثال که در تولید پیاز، نسبت مایع‌های تجدیدپذیر در کل انرژی ورودی به 98479% می‌باشد.

tبلیغات اقتصادی تولید پیاز

ارزش ناخالص تولید پیاز ۱۳۰۷۳۵۹۴۷۰ دریال، کل هزینه تولید ۷۷۹۰۴۶۴۱۸ و نسبت فایده به هزینه در تولید محصول پیاز ۱/۹۵ به دست آمد (جدول ۶). نسبت فایده به هزینه در سایر محصولات زراعی در ایران مشابه بود به عنوان مثال نسبت فایده به هزینه در گندم دیم و آبی ۰/۴۷ درصد (۱/۹۷/۸۵۰). در نتیجه، ارزش ناخالص تولیدی که به هزینه در گندم دیم و آبی برابر ۸/۵۷ درصد (۱/۹۷/۸۵۰) گزارش نموده می‌باشد.

نتیجه‌گیری

مدیریت ارزی موضوع مهمی در بخش کارآیی پایداری و استفاده اقتصادی از انرژی است. کل انرژی ورودی برای تولید یک هکتار پیاز، ۹۰۴۸۵ مگاوات و کارآیی انرژی آن ۱۹/۱۹/۷ بود. بنابراین کارآیی در تولید محصول پیاز به دلیل مصرف زیاد الکتریسیته، کودهای شیمیایی، آب آبیاری، کود دامی و سوخت گازولین، پایین بود. در همین راستا، با مدیریت صحیح در جهت کاهش مصرف به هزینه انرژی به سیستم می‌توان کارآیی انرژی را افزایش داد. در تولید محصول پیاز الکتریسیته بهترین سهم را در مصرف انرژی ورودی به همکاری اختصاص

که در نتیجه از تولید عمکرد و قیمت فروش
جدول ۶. تحلیل اقتصادی تولید پپسی

<table>
<thead>
<tr>
<th>عامل/پارامتر</th>
<th>ارزش</th>
</tr>
</thead>
<tbody>
<tr>
<td>برداشت (کیلوگرم/هکتار)</td>
<td>73227</td>
</tr>
<tr>
<td>قیمت فروش (ریال/کیلوگرم)</td>
<td>1785</td>
</tr>
<tr>
<td>ارزش ناخالص تولید (ریال/هکتار)</td>
<td>130743967</td>
</tr>
<tr>
<td>ارزش ناخالص تولید (ریال/کیلوگرم)</td>
<td>57390181</td>
</tr>
<tr>
<td>هزینه ناخالص تولید (ریال/هکتار)</td>
<td>21872727</td>
</tr>
<tr>
<td>هزینه ناخالص تولید (ریال/کیلوگرم)</td>
<td>79262908</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/هکتار)</td>
<td>1082</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/کیلوگرم)</td>
<td>73353786</td>
</tr>
<tr>
<td>برداشت ناخالص (ریال/کیلوگرم)</td>
<td>51481059</td>
</tr>
<tr>
<td>نسبت فایده به هزینه</td>
<td>1.65</td>
</tr>
</tbody>
</table>

منابع مورد استفاده