انتقال بذر توسط علفخواران اهلی در اکوسیستم‌های مرتعی منطقه زاگرس مرکزی

انیس اقبالی، مجید ایرانی، مهدی بهتری، مصطفی ترکی اصفهانی و عبدالرضا مهاجری

(تاریخ دریافت: 1391/9/3 تاریخ پذیرش: 1392/3/5)

چکیده

به منظور بررسی انتقال بذور گیاهان توسط علفخواران اهلی (گوسفند و یوز) در منطقه زاگرس مرکزی، 12 مکان مرتعی در 200 کیلومتری غرب شهر اصفهان انتخاب و در هر مکان در چهار زمان مختلف (به‌نامه‌های خرداد، تیر، مرداد و شهریور) به‌طور ناچاری 20 نمونه ترکیبی از ده گروه سرگینی تازه علفخواران اهلی جمع‌آوری گردید (دو مجموعه 48 نمونه). نمونه‌های سرگین در اتاق تازیک و در معرض جریان هوای آزاد خشک شده و سپس از هر کدام 5 نمونه 15 می‌برای اعمال تیمار سرماهده انتخاب و به‌دست دواسته در سه‌ماهه درصد سانسی گردید و چهارگانه نگهداری شد. ترکیب بذری نمونه‌های سرگیمی در آزمایش‌های جوانه‌زنی در گلخانه‌های بسته 8 ماه تعیین گردید.

در مجموع تعداد 289 بذر مقابل به 50 گونه گیاهی (26 خانواده و 28 ژنس) از نمونه‌های سرگیم جوانه‌زد. ترکیب بذری نمونه‌ها به‌شناس گونه‌های علفی و خوشخوراکی بود که چجز تولید بذرهای ریز و زیاد و انتقال از طریق سرگین، شرایط مناسب انتقال روش‌های دیگر را ندارند. به‌ترین پیش‌ترین و کمترین انتقال بذر جوانه‌زد در مجموعه‌های تیر و خرداد دیده شد. همچنین پیش‌ترین و کمترین انتقال گونه بذری به‌زیرگرفته در مجموعه‌های شهریور و خرداد بیشتر به‌وسیله انتقال از طریق سرگین مشاهده گردید. با توجه به زادواری جنسی اکثر گونه‌های گیاهی بذری شده در پوشش گیاهی منطقه، انتقال بذر از طریق سرگین علفخواران اهلی می‌توانند نقش مهمی در احیای طبیعی پوشش گیاهی، در صورت فراهم بودن ساپر شرایط محیطی و مدیریتی داشته باشند.

نتایج این تحقیق می‌تواند ضمن انتشار داشت انتقال بذر گیاهان، به‌طور ویژه در احیای پوشش گیاهی اکوسیستم‌های چربی کشور به‌کار گرفته شود.

واژه‌های کلیدی: جوانه‌زنی بذر، احیای طبیعی پوشش گیاهی، اکوسیستم‌های چربی، پویایی بذر، بذری سرگین

1. گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
2. اداره کل منابع طبیعی استان اصفهان

anis_1242@yahoo.com

* مستند مکانات: پست الکترونیکی: *
علف‌خوراوان مقاقدر زیادی از بذر گیاهان را خورده و در داخل یا مابین مکان‌هایی که در آن چرا کنند، انتقال می‌دهند (۲۵). این بذر برای ساوت‌های متنوع (گاهی تا ۸۰ ساعت) در داخل جیره‌ها گونه‌خوراوان بایق و اندهدام که در صورت سالم ماندن می‌توانند به سرعتی که جدا از سایر سرگین‌گونه‌خورایی به‌دست افراد جشش‌گیری نگه‌داشته، برای بهره‌برداری از منابع و نوسان‌های آب و هوا‌های اکوسیستم‌های چربی‌ب داده می‌شود (۲۶). مزیت‌ها:

- انتشار
- یک‌گاه‌های

در نتیجه کم‌مقاقدر بین گونه‌خوراوان و پوشش گیاهی (Vegetation-herbivore interactions) مهم پایداری در این اکوسیستم‌ها منجر به تحریم پوشش گیاهی و حفظ شده است. در هر صورت تنها توجه به انواع گونه‌خوراوان، اکوسیستم‌ها و همچنین تاریخچه تکاملی چرا (Evolutionary history of grazing) که گونه‌خوراوان می‌توانند پوشش گیاهی را تحت تأثیر قرار دهند.

ناشناخته مانده است (۲۶). ۲۳.

علف‌خوراوان فرضیه معنی‌داری در پیش‌بینی پوشش گیاهی

اکوسیستم‌های جنگلی‌ای از طریق تغییر در جرخه تولید مثل زانی‌ها (بی‌پاس بانک در خاک) (Soil seed bank dynamics) در اینجا (۲۷). آنها پیش‌بینی بذر خاک را از سه حیات یا یک حیات کم‌دردست بذر، انتقال بذر از منابع بذری در دسته‌سپر یا بعد از جایگذاری (Seed dispersal from long-distance sources) فضاهای خالی از روی (قاب‌آب) برای جوان‌زایی و (Competition-free gaps) استقرار بذر به‌طور تأثیر قرار می‌دهند (شکل ۱). انتقال بذر از طریق عناصری از قبیل باد، آب، انسان‌ها، و جانوران مختلف

صوانت می‌گیرند، اما بذرها بسیار از گیاهان اکوسیستم‌های چربی‌ب ادامه کروکس داشته و انتقال رسمی را برای TC (۲۶). فلوئیک (Foliage is the fruit hypothesis) را ترکیب می‌گذارد که می‌تواند رویکردی باشد جوان‌زایی و سبز گیاه‌های توسیع انتقال بذر از طریق گونه‌خورایی مختلف از طریق سرگین گونه‌خورایی اهلی (عمدتاً گونه‌خورایی) در طول یک فصل کامل چرا در مراحل نیمه استبی متنطقه زاگرس مزبور (Endozoochorous seed dispersal) می‌شود.
انتقال بذر توسط خلفخوانان اهلی در اکوسیستم‌های مرتفع منطقه "..."}

شکل 1: اثرهای مهم خلفخوانان بزرگ بر پردازش بذر در خاک و پوشش گیاهی در اکوسیستم‌های چاری. در این مطالعه تنا انتقال بذر توسط خلفخوانان بررسی گردیده است (شکل برگرفته از ایروانی، 2005).

ریسی اسم: قلمی منطقه براساس روش طبقه‌بندی Domartion(دومارتن) نبیه مرطوب و توزین سالانه آن 233 میلی‌متر است که بیشتر بصورت در برف و در طول فصل زمستان نازل می‌شود. میانگین درجه حرارت سالانه منطقه 9/9 درجه سانتی‌گراد است به‌طور که حداقل در طول 4 ماه متوسط درجه حرارت شبانه روز کمتر از 1 درجه سانتی‌گراد می‌باشد (1).

پوشش گیاهی منطقه تربیکی از گیاهان بوته و گندم‌می باشد که در مکان‌های کمتر تربیب می‌شود به‌طور جمعی و در مکان‌های خشک کمتر تربیب می‌شود به‌طور جمعی تربیب بیشتر به‌صورت بوته زار (ترکیبی از گونه‌های کتربانی و گری) و یا پوشش غلیب گیاهان کندمی باشد به‌طور جمعی می‌شود. فصل بریش گیاهان معمولاً از نیمه دوم فروردین ماه آغاز و تا نیمه‌های نیمه ادامه می‌دارد. زمان گل‌دهی گیاهان غلیب و مرتعی منطقه نیز معمولاً از اواخر آذر به‌طور جمعی ماه آغاز و تا اواخر خرداد ماه ادامه می‌کند (2). این منطقه از مناطق نیمه ابتدایی منطقه زاکرس مرکزی است که مرکزی بوده و طوری بوده‌ای مربوط به برداشت (نوع گونه و تعداد بذر) سرکین خلفخوانان اهلی و غیره این ماه‌های مختلف فصل چرا (خردان تا شهریور) ماه با جمع آوری 480 نمونه اصل درجا (خردان تا شهریور ماه) با جمع آوری 480 نمونه سرکین (48 نمونه تربیکی) بررسی شد.

مواد و روش‌ها
منطقه مورد مطالعه
این تحت‌یاد در منطقه زاکرس مرکزی در جنوب خلیج Atlantis (از زیر خلیج‌های سد کمالین لقب می‌شود که به‌طور جمعی در 200 کیلومتری غرب شهر اصفهان (بين طول‌های جغرافیایی 24° 50’ 05” تا 54° 35’ 40” شرقی و عرض‌های جغرافیایی 27° 30’ تا 17° 18’ شمالی) انجام گردید. این منطقه شامل بخش‌های تربیکی و کوه‌هایی در شمال به ترتیب با حداکثر ارتفاع 1750 متر از سطح دریا می‌باشد. خاک‌های منطقه شامل خاک‌های نسبتاً نیم‌کاهش‌یافته و نیم‌کاهش‌یافته با بهره‌های غلیب ایمن‌ستی سول (Inceptisols) و ایمن‌ستی سول (Mollisols) و گلوسول (Alfisols) می‌باشد.

51
بپذیریم نمونه‌های سرگین در گلخانه

پروتسب زراعی، خاکبرگ و ماسه استرلیزه شده بر گردیدند و بر روی آن یک لایه یک سانتی‌متری ماسه پخش گردید. برای کشت نمونه‌های سرگین، ابتدا به آرامی سرگین‌ها با مطرطوب کردن و پاک کردن رسمی در بازیاب (پوردر) و بدون این کارایی به تمامی بازیاب‌ها موجود در سرگین بررسی شد. سپس هر نمونه به صورت یک لایه ۵ میلی‌متری روی سطح سینی‌های رشد پخش گردید و با لایه تا زنده استرلیزه شده (۵ میلی‌متر حداکثر) پوشانده شد. همین‌طور ۱۲ سانتی‌متر رشد با ترکیب خاک یکسان و قافل نمونه سرگین به عنوان شاهد و برای شناسایی بذر زنده اتمامی پس از استرلیزه کردن استفاده شد.

سینی‌های کشت در محلی با نور کافی خورشید در گلخانه قرار گرفت و به آرامی و با استفاده از آبایی غرفه‌کی کل عمق خاک‌ها مرطوب گردید. در طول آزمایش‌های جوانه‌زنی در گلخانه‌های اسپرتی سینی‌ها توسط آب شرب به‌صورت انجام شد که از خشک شدن پیشین خاک یا سبل می‌باشت. سپس جدولی ساخت. به‌طور متوسط دمای گلخانه در طول مدت آزمایش‌های جوانه‌زنی ۱۷ درجه سانتی‌گراد در طول روز و ۱۵ درجه سانتی‌گراد در طول شب بود.

بذور موجود در نمونه‌های سرگین پس از جوانه‌زنی و رسیدن به حداکثر کم قابل شناسایی باشم، با استفاده از فلورهای کیاهی و حداکثر تا عمق سه فقره‌تای شناسایی شده و پس از شمارش به‌طور جولگیری از ایجاد رقابت با سایر بذردهاری در حال جوانه‌زنی سینی‌های رشد انتهایی شدند. پس از مدت ۶ ماه (آبان ۱۳۸۹ تا آذر ۱۳۹۰) و زمانی که دیگر بذر جوانه‌های در سینی‌های رشد به‌نظر می‌رسید و نمونه‌های سرگین پخش شده بر روی سطح سینی‌های رشد زیر و رو گردیده و آزمایش با شرایط به‌کار بریده سه و نفر فاوانش شناسایی شده و پس از شمارش به‌طور جولگیری از ایجاد رقابت با سایر بذردهاری در حال جوانه‌زنی سینی‌های رشد انتهایی شدند.

بررسی ترکیب بذور نمونه‌های سرگین در گلخانه

بپذیریم نمونه‌های سرگین برای نمونه‌های سرگین در گلخانه از سینی‌های کشت مستقل شکل به ابعاد ۱۰ × ۲۰ × ۴۰ سانتی‌متر استفاده شد. برای بررسی سینی‌ها از پوست‌خت خاک و زراعی، خاکبرگ و ماسه هر گدام به یک نسبت استفاده شد. بپذیریم نمونه‌های سرگین بعد از بین بردن بذر علفه‌های بزرگ موجود در هر یک و استرلیزه کردن از قارچ‌ها، بیش از هر گدام از این کشت به صورت کافی به‌صورت دهم در دمای ۴۰ درجه سانتی‌گراد در آن قرار داده شد. سپس ۲ سانتی‌متری زیر لبه با نسبت مساوی خاک خواب بودند. (Dormant Seeds)، انجام نشد.

توصیه‌های معملی محاسباتی سایاهین انتقال بذر در گلخانه توسط

علف خواران اهلی ۲۶ مکان مرتبط (بی‌عوم این مجموعات ۲ کیلو همتر از یکدیگر) در سینی‌های گالب مخاطبر انتخاب شد. در هر یک از ۲۶ مکان انتخاب شده در طول فصل جنگلی ماه‌های خرداد، تیر مارزی و شهروند (Pooled dung sample) به‌طور تصادفی از هر گروه سرگین تازه (عازار از هر گدام بذر خارجی) دام‌های اهلی جمع‌آوری گردید. (در مجموع ۷۸ نمونه تبریکی) نمونه‌های سرگین با این‌که از جمع‌آوری به‌طور تصادفی و خشکی انتقال داده شد و سپس از گل‌دهی به‌طور کثیف به‌طور متوسط دمای گلخانه در طول مدت آزمایش‌های جوانه‌زنی ۴۰ درجه سانتی‌گراد در طول روز و ۱۵ درجه سانتی‌گراد در طول شب بود.

درجه سانتی‌گراد داخل پاکت‌های کاغذی در پنج‌گاه نگهداری شدند. پس از این دوره نمونه‌ها برای کشت به گلخانه انتقال یافتند...

۵۲
نتایج

محتویات بذری کل نمونه‌ها
در مجموع ۲۰۳۲ تعداد نمونه‌های سرگین رشد بذری و چهارشکنی یافتند و در نمونه‌های سرگین رشد بذری و چهارشکنی ۸۷ تعداد یافتند. در نمونه‌های سرگین کشت شده بودند. در نمونه‌های سرگین کشت شده بودند.
جدول 1. لیست گونه‌های گیاهی جوانه‌زده از نمونه‌های سرگین. گونه‌ها براساس تعداد کل بذر جوانه‌زده در نمونه‌های سرگین (28 نمونه 15 گرمی) مرتب شده‌اند.

<table>
<thead>
<tr>
<th>گونه</th>
<th>خانواده گیاهی</th>
<th>قسمت روبنی</th>
<th>فرمول عمر</th>
<th>تعداد کل بذر جوانه‌زده (حداکثر 28 نمونه)</th>
<th>تعداد مشاهده شده (حداکثر (7)</th>
<th>فراوانی نسبی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td>Caryophyllaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>46</td>
<td>92</td>
<td>44/2</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>17</td>
<td>361</td>
<td>17/7</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>18</td>
<td>239</td>
<td>11/7</td>
</tr>
<tr>
<td>Noaea mucronata</td>
<td>Chenopodiaceae</td>
<td>پیونه</td>
<td>87</td>
<td>29</td>
<td>110</td>
<td>5/4</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>Poaceae</td>
<td>پندهن</td>
<td>87</td>
<td>31</td>
<td>84</td>
<td>2/1</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>22</td>
<td>54</td>
<td>2/6</td>
</tr>
<tr>
<td>Robescia schimperi</td>
<td>Brassicaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>22</td>
<td>28</td>
<td>2/2</td>
</tr>
<tr>
<td>Silymbrium irio</td>
<td>Brassicaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>22</td>
<td>37</td>
<td>1/8</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Fabaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>12</td>
<td>16</td>
<td>0/8</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>9</td>
<td>12</td>
<td>0/7</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae</td>
<td>پندهن</td>
<td>87</td>
<td>11</td>
<td>14</td>
<td>0/7</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantaginaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>10</td>
<td>10</td>
<td>0/5</td>
</tr>
<tr>
<td>Astragalus verus</td>
<td>Fabaceae</td>
<td>پیکاسه</td>
<td>87</td>
<td>7</td>
<td>10</td>
<td>0/5</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td>Asteraceae</td>
<td>پندهن</td>
<td>87</td>
<td>10</td>
<td>10</td>
<td>0/5</td>
</tr>
<tr>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>پندهن</td>
<td>87</td>
<td>4</td>
<td>10</td>
<td>0/5</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Asteraceae</td>
<td>پندهن</td>
<td>87</td>
<td>9</td>
<td>9</td>
<td>0/4</td>
</tr>
<tr>
<td>Agropyron intermedium</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>3</td>
<td>9</td>
<td>0/4</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>Papaveraceae</td>
<td>گنبدی</td>
<td>87</td>
<td>8</td>
<td>10</td>
<td>0/5</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>پندهن</td>
<td>87</td>
<td>6</td>
<td>7</td>
<td>0/3</td>
</tr>
<tr>
<td>Agrostis stolonfera</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>5</td>
<td>6</td>
<td>0/3</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>5</td>
<td>6</td>
<td>0/3</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>Boraginaceae</td>
<td>پندهن</td>
<td>87</td>
<td>2</td>
<td>5</td>
<td>0/2</td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>1</td>
<td>5</td>
<td>0/2</td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td>Poaceae</td>
<td>گنبدی</td>
<td>87</td>
<td>3</td>
<td>3</td>
<td>0/2</td>
</tr>
<tr>
<td>Centaurea luristanica</td>
<td>Asteraceae</td>
<td>پندهن</td>
<td>87</td>
<td>2</td>
<td>5</td>
<td>0/2</td>
</tr>
<tr>
<td>نام گیاه</td>
<td>خانواده</td>
<td>تعداد</td>
<td>کدیت</td>
<td>نام کامل</td>
<td>خانواده</td>
<td>تعداد</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>2</td>
<td>0/2</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/2</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td>Caryophyllaceae</td>
<td>2</td>
<td>0/2</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/2</td>
</tr>
<tr>
<td>Erysimum langistylum</td>
<td>Brassicaceae</td>
<td>2</td>
<td>0/2</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/2</td>
</tr>
<tr>
<td>Achillea vernalis</td>
<td>Asteraceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td>Brassicaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Fumaria asepalai</td>
<td>Papaveraceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Polygonum molliforme</td>
<td>Polygonaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>Fabaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td>Fabaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Echinochloa oryzoides</td>
<td>Poaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Secale montanum</td>
<td>Poaceae</td>
<td>2</td>
<td>0/1</td>
<td>بیشتر گیاهی</td>
<td>2</td>
<td>0/1</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Convolvulaceae</td>
<td>1</td>
<td>0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td>0/0</td>
</tr>
<tr>
<td>Brassica longate</td>
<td>Brassicaceae</td>
<td>1</td>
<td>0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td>0/0</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td>Rosaceae</td>
<td>1</td>
<td>0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td>0/0</td>
</tr>
<tr>
<td>Callipeltis cucullaria</td>
<td>Rubiaceae</td>
<td>1</td>
<td>0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td>0/0</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td>Poaceae</td>
<td>1</td>
<td>0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td>0/0</td>
</tr>
<tr>
<td>Bifoliosis arvensis</td>
<td>Boraginaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td>Chenopodiaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td>Lamiaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Ceratocephalus falcatus</td>
<td>Asteraceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Bonium cylindricum</td>
<td>Apiaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>Poaceae</td>
<td>1</td>
<td><0/0</td>
<td>بیشتر گیاهی</td>
<td>1</td>
<td><0/0</td>
</tr>
</tbody>
</table>
جدول 2. خصوصیات بذرها گونه‌های سرگین درصد از کل بذرها(درصد) درصد از کل گونه‌ها (عدد) تعداد گونه‌ها

<table>
<thead>
<tr>
<th>طول عمر</th>
<th>یکساله</th>
<th>چندساله</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/6</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>2/0</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>8/0</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>7/1</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>5/9</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کچک (کوچکتر از 2 میلی‌متر)</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>متواسط (2-4 میلی‌متر)</td>
<td>17</td>
</tr>
<tr>
<td>بزرگ (بزرگتر از 4 میلی‌متر)</td>
<td>17</td>
</tr>
<tr>
<td>تولید بذرهای طولی</td>
<td>1</td>
</tr>
<tr>
<td>کم متوسط</td>
<td>10</td>
</tr>
<tr>
<td>زیاد</td>
<td>39</td>
</tr>
<tr>
<td>روش تکیه</td>
<td>3</td>
</tr>
<tr>
<td>روش انتقالی</td>
<td>4</td>
</tr>
<tr>
<td>روش زایش</td>
<td>37</td>
</tr>
</tbody>
</table>

رویشی و غیرجنسی نیز زادآوری دارند. (جدول 2). بودند که معمولاً تولید بذرهای دارای گونه‌های 66 (درصد گونه‌ها و 27/6 درصد بذرها) گونه‌های دارای بذرهای معمولی (طول بذر در کمتر از 2 میلی‌متر) بودند. با این حال Taraxacum را در برابر Bromus tomentellus(L. officinale (Weber) بذرهای بزرگ (طول بذر بزرگتر از 4 میلی‌متر) تولید می‌کنند نیز در بین گونه‌های دیگر شدن. همچنین در این گونه‌های گونه‌های جوان‌نامی از نمونه‌های سرگین (42 درصد گونه‌ها و 9/6 درصد از بذرهای گونه‌های یکساله) بودند که نیز از طریق بذر تکثیر و زاد آوری می‌کنند. در هر صورت تعداد محدودی از گونه‌ها (به‌عنوان مثال Agrostis stolonifera (L.) Cynodon dactylon (L) از نمونه‌های سرگین کشت شده جوان‌نامی زندگی که که علاوه بر تکثیر جنسی معمولاً از طریق
شکل ۳. مقایسه میانگین مختصات نمونه‌های سرگین در ایجاد محور اول DCA (الف)، میانگین تعداد کل بذر (ب) و میانگین تعداد گونه بذری جوانزده در نمونه‌های سرگین ماده‌های مختلف که بازه آماری روز سنتاها خطا استاندارد در نمونه‌های هر ماه و نشان می‌دهد. حروف منتفی نشانگر اختلاف معنی‌دار بین مقادیر میانگین‌ها است (آزمون مقایسه میانگین توکی، ۵/۰٪).

پ. نتایج آنالیز واریانس نشان داد که اختلاف معنی‌داری بین تعداد بذرِهای جوانزده در نمونه‌های سرگین ماده‌های مختلف وجود دارد (۴/۰۲<\textit{P}=۰/۰۲). با این حال آزمون مقایسه میانگین توكی نشان داد این اختلاف معنی‌دار بین تراکم بذری نمونه‌های سرگین تیر و خرداد را تایید نمود (۲/۰۲<\textit{P}=۰/۰۲).

نتیجه‌ی نکته‌ای ماده سرگین تیر و خرداد نشان داد (شکل ۲).
گونه‌های علفی و خوشخوارک‌یکی بود که معمولاً بذردهای ریز و زیبایی تولید می‌کنند. اگرچه مشابهی از انتقال بذر در اکوستم‌های دیگر گزارش شده است (7 و 13) این عمل غلافخواران نتیجه یک رابطه کامل با گونه‌های گیاهی مورد علاقه آنها در اکوستم‌های با سابقه طولانی (6) است. در واقع مهم‌ترین راه انتقال بذر این دسته از گیاهان به نقشه‌های طبیعی دورتر از پایه‌های مادری خورا گزارش غلافخواران و دفع در سرگین است (10، 13 و 27). تولید بذر زیاد با انتقال کوکزک (شکل گرد) عبر بذر از اکوستم‌گزارش غلافخواران با یک هور سالانه و بدون سدیس فیزیکی امکان پذیری بود (12، (Plant architecture)). با نظر درکی در برگ‌های سبز در گیاهان مسئول بر انتقال از طریق سرگین به سریع کارکرده که بذر در پر ورود گیاهان به انتخاب به سبز و فراوان و با در فاصله تندیک بالای C. inflatum (شکل گرد) عبر بذر از اکوستم‌گزارش غلافخواران در نمونه‌های سرگین، و غلافخواران با چرای بر روی گیاهان، همراه با انتخاب به سبز بذر از انتقال می‌کند (26). در هر صورت نیاز به سرگین انتقال غلافخواران بر روی اندام‌های گیاهی همراه با بررسی تولید بذر و مشخصه‌های بذر گیاهان و از این عوامل با محتوای بذری سرگین به وسیع سیستم‌های هر یک از عوامل در محیط بذری سرگین غلافخواران بردایه.

مشابه به نتایج مطالعات دیگر (25 و 33) نتیجهٔ سرگین در (A. verus و N. mucronata) از گونه‌های بوته‌ای (دو گونه نم‌ریز است) و سرگین ثبت کردیم. مصرف کم اندام‌های گیاهان بوته‌ای به همراه تولید بذر کم با انتقال گرک، که باعث هضم بذر از دستگاه غلافخواران می‌گردید، از جمله عوامل هستند که باعث انتقال کم بذر این گیاهان از طریق سرگین می‌شود (76) اما دو گونه کیاها فوق بذر ریز و زیاد تولید کرده و احتمالاً مصرف کم از اندام‌های گیاهی و هضم بذر این گیاهان را بررسی کردیم.

بحث و نتیجه‌گیری

محوری بذری کل نمونه‌های سرگین

در مجموع ۵۵ گونه کیاها توسط غلافخواران اهلی در طول فصل چرا انتقال ثبت شده است. در نمونه‌های سرگین ثبت کردیم. استفاده در محله‌های باز و فشار در انتقال بذر این نوع گیاهان کاربرد افتخاری از طریق سرگین غلافخواران گزارش شده است (10، 13 و 27). این انتقال بر روی اندام‌های تولید می‌کنایان غلافخواران به جای شیار برگ و غنی بودن از لحاظ مواد غذایی منجر به انتقال بذر گیاهان می‌شود (26).

کتابیت بر الکترون نمونه‌های سرگین به طور عمده شامل تکه‌های باز و فشرده بود.
در هر صورت می توان از روش کاهش تریا (12) با استفاده از گل‌های محیطی بذور گونه‌های مرتعی و بررسی تغییرات بذور نمونه سرگین و ارتباط آن با مشخصات مورفولوژیکی بذور تغذیه شده به بررسی اهمیت نسبی هر کدام از عوامل پرداخت.

در این مطالعه 14 گونه گندم در نمونه‌های سرگین نیک گردید. در حالت که در بيوم مطالعات حضور تعداد اندازی از بذور گونه‌های گندم گزارش شده است (11 و 29). نتایج نشان داد که بذور گونه‌های مرتعی و B. tomentosum مناسب به تعداد قابل توجهی توسط سرگین می‌گردد. این گیاه و گونه‌های گندم مشابه دارای تولید بذر کم از برگ و کشیده در پاسخ به سال سالم مانند آنها یا بذر از دستگاه گزارش فلخوار زمان‌های کم مشابه (38). در هنگام مطالعه به دلیل این گیاه پس از اتمام عمله سبز و در دوره رشد گیاهان (نپ ماه) مصرب قرار گیرد که بذر گونه به بلع کامل رسیده و دارای پوست نسبتاً سخت می‌باشد. بذر گیاهان بذر بذر این گیاهان از دستگاه گزارش فلخوار زمان‌های احتمالاً نهایی نمی‌بیند. تخریب پوسته و افزایش میزان جوانه‌زنی آنها می‌شود. همچنین، کیفیت باین علوفه مصری توسط فلخواران پس از شروع به رکود رشد گیاهان می‌تواند نمک به راندمن در هنگام گیاهان از دستگاه گزارش فلخوار زمان‌های کم مه‌گرم و در نتیجه سالم ماندن بذر این گیاهان در بذر گونه‌های بذری نمونه‌های گزارش فلخواران گردید (49). در هر صورت بایستی در مطالعات جدایگانه صحبت این دو فرضیه با استفاده از روش کاهش تریا به بذر گیاهان گندم بررسی گردد.

محوری بذور نمونه‌های گیاهان در ماه‌های مختلف به‌ترتیب بیست‌شنبه و کمترین تعداد بذر جوان‌زاده در نمونه‌های سرگین ماه‌های تیر و خرداد بیشتر گردد. الگوی مشاهده شده در ارتباط با فنولزیکال‌رها روش و روش زایشی گیاهان می‌باشد (31). در منطقه مورد مطالعه، مدت زمان...
ماه شهریور، الگوی استراحت و چرای علف‌خواران نیز در تغییر تعداد گونه‌بندی نمونه‌های سرگین نقش دارد. بذر تعداد کلی توجه گونه‌گیاهی از نمونه‌های سرگین علف‌خواران جوانه زد که بیشتر شاخص اکوسیستم‌های (Riparian ecosystems) حاشیه‌ای مازوی کشاورزی، منابع آب و یا انرژی‌های می‌باشد.

این گیاهان بذری‌خوار رطوبت کلی دسترس‌پذیر علوفه ناخالصی گیاهان از طریق سرگین علف‌خواران امکان‌پذیر نمی‌باشد.

کاربرد در مدیریت اکوسیستم‌های جنگلی

تأثیر انرژی تغییر در بذر گونه‌های متنوع از جمله گونه‌های تغییر در حالت‌های متغیر و خوش‌خوراکی را از طریق سرگین علف‌خواران اهلی نشان داد. با توجه به زاد وجای و تکثیر جنسی (از طریق بذر) اغلب گیاهان منطقت، انتقال بذر توسط علف‌خواران به فاصله دور از یاه‌های مادی علوفه به‌طور تدریجی رویش گیاهی می‌تواند باعث حفظ و ایجاد تنش زیستی در این گونه‌ها معمولاً دارد. با توجه به انتقال بذر گیاهان به همراه مدیریت صحیح جراحت و بذری و مرنگ می‌تواند کمک قابل توجهی به انتقال بذر گونه‌های مقدّم و هدف به بانک بذر خاک برای احیای طبیعی بوش گیاهی در بی‌بی‌های زمانی قابل فیبری بنامی. مدیریت صحیح رابطه مقاپ و علف‌خواران و بوش گیاهی با دام و مرنگ بیشتر مصرف‌کننده میانس از علف‌خواران بُرون حمله به دود هنری بذر گیاهان مصرفی و هدف به مکان‌های که دارای محصولات بذری می‌باشد. ضروری است. در این ارتباط نتیجه کارگاه‌های آموزشی ترغیب برای به‌پروراوند و مرتبت‌برداران با ارائه مثال‌های عملی و قابل لمس از انتقال بذر گیاهان مرغوب و مرنگ (مانند گونه (B. tomenellus) علف‌خواران توصیه می‌گردد.

مطالعات دیگر نیز گزارش شده است (25 و 32).

مقایسه گیاهان در نمونه‌های متنوع، تنوای معنی‌داری بین ترکیب گونه‌های شهریور با نمونه‌های دیگر ماه را نشان داد. این نتایج به ترکیب بیشتر مربوط به تراکم بالای بذر گونه علوفه‌های پوسته (A. verus) و در سطح کمتر مربوط به حضور بذر گونه پوسته (M. sativa) در نمونه‌های شهریور می‌باشد. در این ماه بیشتر در دسترس تبدیل علف‌خواران علوفه به کیفیت علف‌خواران علوفه به

از بین گیاهان خشک و بوش‌های غیر‌خوشه‌کاری می‌پردازند. این گیاهان به دلیل چرای کمر در مقایسه با گیاهان خوشه‌کاری که می‌توانند در حالت‌های مختلف فعلی دوست روشی تحت جریان مطر بوده‌اند. بخش بیشتری از منابع غذایی خود را به تدریج بذر با رشد زایشی اختصاص می‌دهند (30). در نتیجه در اواخر جنگل بستری بر روی پایه‌های خود داشته‌که در صورت چرا امکان انتقال بذرشان از طریق سرگین وجود دارد (7). در هر صورت تاکنون مطالعاتای متابیت مورد استفاده

1. ایرانی، م. ع. سعدی، ف. ر. رجبی و ش. فاطمی. 1381. مطالعات شناسایی جوزه آبی‌ایزکچی‌یی (از زیر حوزه آبی‌ایزکچی‌یی) گلابیگان. گزارش پوشش گیاهی و مرنگ، جلد 2. دانشگاه، منابع طبیعی، دانشگاه صنعتی اصفهان. 135صفحه.

<table>
<thead>
<tr>
<th>نام علمی کونه</th>
<th>فراویان نسی (1)</th>
<th>تخمدان</th>
<th>شترود</th>
<th>ماراد</th>
<th>شهرور</th>
<th>شهرور در ایران</th>
<th>شهرور در ایران</th>
<th>شهرور در ایران</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td>Caryophyllaceae</td>
<td>100</td>
<td>118</td>
<td>46</td>
<td>72</td>
<td>2,2</td>
<td>46</td>
<td>2,2</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
<td>80</td>
<td>55</td>
<td>107</td>
<td>8</td>
<td>6,5</td>
<td>27</td>
<td>4,2</td>
</tr>
<tr>
<td>Roheschia schimperi</td>
<td>Brassicaceae</td>
<td>76</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>Poaceae</td>
<td>70</td>
<td>16</td>
<td>18</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Noaea macronata</td>
<td>Chenopodiaceae</td>
<td>60</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>60</td>
<td>6</td>
<td>15</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td>Brassicaceae</td>
<td>50</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Asteraceae</td>
<td>40</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae</td>
<td>40</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td>Asteraceae</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Fabaceae</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td>Brassicaceae</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cynosus dactylon</td>
<td>Poaceae</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td>Caryophyllaceae</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erysimum langistylum</td>
<td>Brassicaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fumaria asepala</td>
<td>Papaveraceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>Fabaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Centauraea hiristanica</td>
<td>Asteraceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ceratophyllum falcatus</td>
<td>Asteraceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>Papaveraceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agropyron intermedium</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>Boraginaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Astragalus verus</td>
<td>Fabaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygonum molliaeforme</td>
<td>Polygonaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echinochloa oryzoides</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Secale montanum</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Callitopsis cucullaria</td>
<td>Rubiaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td>Chenopodiaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantaginaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Convolvulaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Achillea vernicularis</td>
<td>Asteraceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brassica elongata</td>
<td>Brassicaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td>Rosaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td>Fabaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bonium cylindricum</td>
<td>Apiaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buglossoides arvensis</td>
<td>Boraginaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td>Lamiaceae</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>