انتقال بذر توسط علفخوانان اهلی در اکوستم‌های مرتبی منطقه زاگرس مرکزی

انیس اقبالی، مجید ایرانی، همید بسیری، مصطفی ترکش اصفهانی و عبدالراضه مهاجری

چکیده

به‌منظور بررسی انتقال بذور گیاهان توسط علفخوانان اهلی (گوسفند و بر) در منطقه زاگرس مرکزی، 12 مکان مرطوب در ۲۰۰ کیلومتری غرب شهر اصفهان انتخاب و در هر مکان در جهان زمان مختلف (به‌همراه خردت، تیر، مرداد و شهریور) بطور تصادفی به‌نامه تکرار و بررسی در معرض چربی هواي آزاد خشک شده و سپس از هر کدام یک نمونه ۱۵۰ گرم را برای اعمال تیمار سرمازده انتخاب و به‌سرعت ۲ ماه در دسای ۳ درجه سانتی‌گراد در یک‌پلاک به‌طور روزانه در گلخانه به‌سانتی‌گراد دهه شد. تکرار بذری نمونه‌های سرگین در آزمایش‌های جوانه‌زنی در گلخانه به‌سرعت ۸ ماه تعیین گردید. در مجموع تعداد ۲۰۳۹ بذر متعلق به ۵۰ گونه گیاهی (۲۴ تخاواده و ۲۴ جنس) از نمونه‌های سرگین جوانه دز. ترکیب بذری نمونه‌های بیشتر شامل گونه‌های علفی و خوشخوراکی بود که به‌جز تولید بذرانه‌های رج و زیاد و انتقال از طریق سرگین، شرایط مناسب انتقال روش‌های دیگر را ندارند. به‌ترین بیشترین و کمترین تعداد بذر جوانه‌های زده در نمونه‌های تیر و خردت دیده شد. همچنین بیشترین و کمترین تعداد گونه بذری به‌ترین در نمونه‌های شهریور و خردت بود. با این حال نتیجه‌گیری مربوط به ترکیب بذری نمونه‌های سرگین شهریور و خردت مشاهده گردید. با توجه به‌زودا‌وری جنسی، گونه‌های گیاهی بیشتر در بوسه گیاهی منطقه، انتقال بذر از طریق سرگین علفخوانان اهلی می‌توانند نقش مهمی در ایجاد طبیعی پوشش گیاهی در مرمت فراهم بودن سایر شرایط محیطی و مدیریتی داشته باشند. نتایج این تحقیق به میزان ضمیمه انتقال بذر گیاهان، به‌طور ویژه در ایجاد پوشش گیاهی اکوستم‌های جنگلی کشور به‌کار گرفته شود.

واژه‌های کلیدی: جوانه‌زنی بذر، ایجاد طبیعی پوشش گیاهی، اکوستم‌های چرباب، پویایی بانک، بذر خاک، مرتع نیمه استثنایی، محتمال بذری سرگین

1. گروه مرتع و آبخیزداری، دانشگاه بافت محیطی، دانشگاه صنعتی اصفهان
2. اداره کل منابع طبیعی استان اصفهان

anis_1242@yahoo.com

* مسئول مکاتبات، پست الکترونیکی:
غلفخواران مقادیر زیادی از بذر گیاهان را خورده و در داخل بنا می‌باشد (25). 
این بذر برای بافت‌های آب‌ناپذیر (گداه‌های تا 80 ساعت) در داخل محیط گزارشی گلفخواران باقی می‌ماند که در صورت سالم ماندن می‌توانند به‌وسیله این ابتکار انتقال گیاهان (15). 
محیطی بذری سرگین گلفخواران اغلب به سیستم گوارشی و رژیم غذایی آنها و همچنین ساختار جامه‌گیاهی که از آن تغذیه می‌کنند بر می‌گردد (19 و 31). لذا سیاسی گیاهی که بذری آنها تن‌کشی انتقال از طریق سرگین گلفخواران را دارد. بزرگی در اکوسیستم‌های که تجربه این اгалب گیاهان از طریق بذر صورت می‌گیرد، ضروری است.
(77) مراتع نیمه اسنی کشور سهم قابل توجهی در تولید ناخالص معیار از طریق خدمات و کالاهای اکوسیستمی متنوعی که ارائه می‌دهند. (17). اما شدت تخریب در این مراتع به حدی بوده که نیازمند برنامه‌ریزی مناسب برای احیای پوشش گیاهی آنها می‌باشد. با توجه به اینکه تعداد گردوهای از بزرگی نظر قرار داده (3). احیای طبیعی پوشش گیاهی منوط به در (Target species) سندرس بودن بذر گونه‌های مقداده و هدف (Seed dispersal from long-distance sources) در باک و گردو خاک است (داسته 28 و 43). یا این حال در اکوسیستم‌های که اثر شدت تخریب فاقد ذخیره بذری مناسب در خاک بوده، احیای طبیعی به شدت وابسته به انتقال بذر در منابع بذری دور دست است (31). شناخت پتانسیل انتقال بذر گونه‌های گلفخوار در مراتع کشور امکان استفاده از این جانوران به‌عنوان عواملی مناسب و بدون هزینه برای انتقال بذر گیاهان مرغوب و هدف از قطعات کمتر تخریب‌پذیر باشد به مکان‌هایی که دارای محصولاتی بذری می‌باشند قرار گیره (77) می‌باشد (24).
هدف کلی این تحقیق بررسی پتانسیل انتقال بذر گیاهان مختلف از طریق سرگین گلفخواران اهلی (عندتاً گودس) در طول یک فصل کامل چرا در مراتع نیمه اسنی منطقه زاگرس
شکل 1. اثرهای مهم غلظت‌های زبرگ بر روی پایه‌گیرنده در اکوسیستم‌های مرطوب است. (شکل برگرفته از ایروانی (25)).

حسینی است. اقلیم منطقه براساس روش طبقه‌بندی Domartion (نیمه مرطوب و متوسط بارش سالانه) آن 233 میلی‌متر است که بیشتر به صورت برف و در طول فصل زمستان نازل می‌شود. میانگین درجه حرارت سالانه منطقه 9/9 درجه سانتی‌گراد است. بطوریکه حداکثر در طول 4 ماه متوسط درجه حرارت شبانه روز کمتر از 1 درجه سانتی‌گراد می‌باشد (1).

‌پوشش گیاهی منطقه ترکیبی از گیاهان بوته‌ای و گندم‌های نیمه‌باد که در مکان‌هایی کمتر تخریب یافته به‌صورت جوامع (Semi-arid grassland) و در مکان‌هایی تخریب یافته به‌صورت بوته‌زار (نیمه‌دریایی گونه‌های کناری و گری) و یا با پوشش غلیب گیاهان کنده‌بکسال دیده می‌شود. فصل روبیش گیاهان معمولاً از نیمه‌دو ماه‌های ماه آگاز و تا نیمه‌های نیز ماه‌های دارد. زمان‌گل‌دهی گیاهان غلیب و مرطوب منطقه نیز معمولاً از اوایل اردبیشت ماه آگاز و تا اوایل خرداد ماه ادامه بدست می‌کند (2). این منطقه بخشی از مراتع نیمه استوی منطقه زاکرک مرطوب است که مرکزی بود به‌طور ویژه، محتوای بذره (نوع گونه و تعداد بذر) سرگین غلظت‌های مرطوب و در گیره آن به همراه محققان مختلف فصل گزارش‌های تا شهروپ ماه) با جمعیت اوری 480 نمونه سرگین (48 نمونه ترکیبی) بررسی شد.

مواد و روش‌ها

منطقه مورد مطالعه

این تحقیق در منطقه زاکرک مرکزی در حوزه آبخیز آفکال (از زیر حوزه‌های سد گلپایگان به سمت جنوب غربی که در 200 کیلومتری غرب شهر اصفهان (به ناحیه‌های جغرافیایی 55° 50′ 00″ - 55° 30′ 00″ درجه شمالی و عرض‌های جغرافیایی 33° 30′ 00″ تا 33° 00′ 00″ شمایی) انجام گردیده. این منطقه شامل بخش‌های نیمه‌ماهوری و کوهستانی پر برف تهیه‌شده و حداکثر ارتفاع ۵۰۰۰ متر از سطح دریا می‌باشد. ناحیه‌های منطقه شامل اکوسیستم‌های غلظت‌های نسبتاً کم‌فرونایه و نیمه عمق با رده‌های غالب اینستی‌سول (Inceptisols) و یا فانت‌غلیب‌نیمه‌سول (Alfisols) و سول (Mollisols) و Alfi‌سول (Mollisols) و فانت‌غلیب‌نیمه‌سول (Mollisols) و
زراعی، خاکبار، و ماسه استریلیزه شده بر گردنده و بر روی آن یک لایه یک سانتی‌متر ماسه پخش گردید. برای کشت نمونه‌های سرگین، ابتدا به آرامی سرگین‌ها با مطلوب کردن و فشان دست برنده (ابداله). سپس به صورت یک لایه 5 میلی‌متری روى سطح سینه‌های رشد پخش گردید و با یک اکت‌سینه‌ای استریلیزه شده ۵ میلی‌متری حداکثر یک شانه‌شده سفید رنگ ۱۲ تا ۱۴ میلی‌متری سرگین با ترکیب خاک بکسان و فشان نمونه‌سازی گردید. برای شاید و برای شناسایی بذر زنده احتمال سرگین با هر اکت‌سینه تشکیل افتاده شد.

سینه‌های کشت در محلی به نار کافی خورشید در گلخانه قرار گرفت و به آرامی و با استفاده از آبیاری غرفه‌ای کل عمق ۱۲ میلی‌متری سرگین‌ها به‌طور آبیاری همه جوانه‌زنی در گلخانه آبیاری سینه‌ها توسط آب شرب رفته انجام شد. به نور مخصوص دما گلخانه در طول مدت آزمایش‌های جوانه‌زنی ۱۷ درجه سانتی‌گراد در طول روز و ۱۵ درجه اصلی کرای در طول شب بود.

پس از موجود در نمونه‌های سرگین یک سانتی‌متری از جوانه‌زنی و رشد یک سانتی‌متر به مدت ۱۲۰ درجه سانتی‌گراد در جوانه‌زنی ۱۶ ماه (آبان ۱۳۸۹ تا دی ۱۳۹۰) و زمانی که دیگر بذر جوانه‌ای دیگری به دست آمده بود، نمونه‌های سرگین بخش زیر به روی سطح سینه‌های رشد ذوب و روزگردیده و آزمایش یک اکت‌سینه مانند شرایط به راحتی رشد پدیدا کرد تا در صورت وجود بذر زنده در نمونه‌های سرگین اکمک زراعی خاکبار و ماسه همکار به یک نسبت استفاده شد. به منظور از بین بردن بذر علفه‌های هر موجود در هر یک و استریلیزه کرد از فلز‌های از هر کدام به اندازه کافی به مدت ۴۸ ساعت در دمای ۴۰ درجه سانتی‌گراد در آن قرار داده شد. سپس ۲ سانتی‌متری مکس سینه‌های کشت با ماسه (برای زیستی به‌طور دوباره) و با ارتقای ۵ سانتی‌متری زیر لبه با نسبت مناسب خاک خواب بودن (Dormant Seeds) انجام شد.
نمودارها داده‌های اصلی و بدون تغییر آماری می‌باشند.

نتایج

بحث

در مجموع 2039 بذر (30% بذر در گرم سرگین) متعلق به 50 گونه از 16 خانواده و 48 جنس گیاهی در آزمایش‌های جوانه‌زنی نمونه‌های سرگین ثبت گردیدند (جدول 1). در خانواده Cardaceae و Poaceae (41 گونه) دارای بیشترین تعداد گونه جوانه‌زد در نمونه‌های سرگین کشت شده بودند.

همچنین برای گونه‌های Cerastium inflatum (L.) و Cardigaria sativa (L.) دسته‌بندی شدند.

بر اساس این نتایج می‌توان به بررسی تغییر در طول فصل چرا از آنتالیز تطبیقی فوس گیره شده به منظور بررسی تغییر در تکثیر بذر در نمونه‌های سرگین استفاده کرد. (23) با استفاده از آنتالیز واریانس یکپارچه (One-Way ANOVA) تغییر در تکثیر بذر در نمونه‌های سرگین بین همه‌ها مختلف با در نظر گرفت مختلف مختصات نمونه‌های سرگین در اعداد متوالي DCA به عنوان متغیر واکنش و عامل دیگر عامل تاثیر (مستقل) بررسی گردید. آنتالیز میانگین به منظور بررسی تغییر در تعداد گونه و تعداد بذر جوانه‌زده در نمونه‌های سرگین بین همه‌ها مختلف به کار برده شدند. در صورت مخرب دادن عامل مالا، از آزمون مقایسه میانگین‌ها برای بررسی (Tukey’s Multiple Comparison Tests) از دسته‌های اختلاف آماری معنی دار بین میانگین‌ها استفاده شد (5/0, α). (7)

قبل از انجام آزمایش‌های نرم‌ال، بودن داده‌ها و وجود یا عدم وجود داده‌های پرانت (Outliers) مورد بررسی قرار گرفت و در صورت نیاز به روش مناسب تغییر داده نسبت به پایتخت کردن آن اقدام (Data transformation) نمود. تمامی آنتالیز‌های آماری با استفاده از نرم‌افزارهای R گردید. تمامی آنتالیز‌های آماری با استفاده از نرم‌افزارهای VEGAN (23) و APE با استفاده از نرم‌افزار DCA در نرم‌افزار آماری R انجام گردید.

آزادسازی و تجزیه و تحلیل داده‌ها

قبل از تجزیه و تحلیل داده‌های گونه‌های جوانه زده در Amaranthus ascendens (Hornem) (Cardus pycnocephalase (L.), Setaria brevispica (K. Schum), به منظور جلوگیری از تفسیر اشتباه از آن در ساخت همان این روش

جدول گونه‌های گیاهی ثبت شده در نمونه‌های سرگین بر حسب طول عمر، فرم رویشی، میزان خوشه‌خواری (7) و اندازه تولید بذر و روش تکثیر و زاد آوری (4, 9) و (10) استنبذای شدند.

به منظور بررسی تغییر در تکثیر بذر در نمونه‌های سرگین در طول فصل چرا از آنتالیز تطبیقی فوس گیره شده به منظور بررسی تغییر در تکثیر بذر در نمونه‌های سرگین استفاده کرد. (23) با استفاده از آنتالیز واریانس یکپارچه (One-Way ANOVA) تغییر در تکثیر بذر در نمونه‌های سرگین بین همه‌ها مختلف با در نظر گرفت مختلف مختصات نمونه‌های سرگین در اعداد متوالي DCA به عنوان متغیر واکنش و عامل دیگر عامل تاثیر (مستقل) بررسی گردید. آنتالیز میانگین به منظور بررسی تغییر در تعداد گونه و تعداد بذر جوانه‌زده در نمونه‌های سرگین بین همه‌ها مختلف به کار برده شدند. در صورت مخرب دادن عامل مالا، از آزمون مقایسه میانگین‌ها برای بررسی (Tukey’s Multiple Comparison Tests) از دسته‌های اختلاف آماری معنی دار بین میانگین‌ها استفاده شد (5/0, α). (7)

قبل از انجام آزمایش‌های نرم‌ال، بودن داده‌ها و وجود یا عدم وجود داده‌های پرانت (Outliers) مورد بررسی قرار گرفت و در صورت نیاز به روش مناسب تغییر داده نسبت به پایتخت کردن آن اقدام (Data transformation) نمود. تمامی آنتالیز‌های آماری با استفاده از نرم‌افزارهای R گردید. تمامی آنتالیز‌های آماری با استفاده از نرم‌افزارهای VEGAN (23) و APE با استفاده از نرم‌افزار DCA در نرم‌افزار آماری R انجام گردید.

آزادسازی و تجزیه و تحلیل داده‌ها

قبل از تجزیه و تحلیل داده‌های گونه‌های جوانه زده در Amaranthus ascendens (Hornem) (Cardus pycnocephalase (L.), Setaria brevispica (K. Schum),
جدول 1. لیست گونه‌های گیاهی جوانه زده از نمونه‌های سرگین. گونه‌ها براساس تعداد کل بذر جوانه‌زده در نمونه‌های سرگین (۷۸ نمونه ۱۵ گرم) مرتب شده‌اند.

<table>
<thead>
<tr>
<th>گونه</th>
<th>خانواده گیاهی</th>
<th>قسمت رویشی</th>
<th>طول عمر</th>
<th>فراوانی نسبی (٪)</th>
<th>تعداد کل بذر جوانه‌زده (حدودکردن ۲۸ نمونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td>Caryophyllaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۲۴/۲</td>
<td>۹۱۲</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Fabaceae</td>
<td>چندسانه</td>
<td>پهن برگ علوفه</td>
<td>۷۸/۷</td>
<td>۳۶۱</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۱۱/۷</td>
<td>۲۳۹</td>
</tr>
<tr>
<td>Noaea mucronata</td>
<td>Chenopodiaceae</td>
<td>چندسانه</td>
<td>پیونه</td>
<td>۵/۴</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>پنی دومی</td>
<td>۲/۸</td>
<td>۸۲</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۸</td>
<td>۵۴</td>
</tr>
<tr>
<td>Robeschia schimperi</td>
<td>Brassicaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۴</td>
<td>۲۸</td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td>Brassicaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۱/۸</td>
<td>۲۲</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>Fabaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۱/۸</td>
<td>۱۶</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۷/۰</td>
<td>۹</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae</td>
<td>چندسانه</td>
<td>پهن برگ علوفه</td>
<td>۷/۰</td>
<td>۱۲</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantaginaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۵/۰</td>
<td>۷</td>
</tr>
<tr>
<td>Astragalus verus</td>
<td>Fabaceae</td>
<td>چندسانه</td>
<td>پیونه</td>
<td>۱۱/۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td>Asteraceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۱۰/۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>Galium verum</td>
<td>Rubiaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۱۰/۵</td>
<td>۲۰</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Asteraceae</td>
<td>چندسانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۴</td>
<td>۹</td>
</tr>
<tr>
<td>Agropyron intermedium</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۳</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td>Papaveraceae</td>
<td>پیکانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۸</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Fabaceae</td>
<td>چندسانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۴</td>
<td>۷</td>
</tr>
<tr>
<td>Agrostis stolonfera</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۵</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۵</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td>Boraginaceae</td>
<td>پیکانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۴</td>
<td>۵</td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۲</td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td>Poaceae</td>
<td>چندسانه</td>
<td>گنگی</td>
<td>۲/۴</td>
<td>۳</td>
</tr>
<tr>
<td>Centaurea luristanica</td>
<td>Asteraceae</td>
<td>چندسانه</td>
<td>پهن برگ علوفه</td>
<td>۲/۴</td>
<td>۲</td>
</tr>
</tbody>
</table>
این جدول ۱. میزان افزایش قیمت جوانه‌های درآمدهای سرگرمگان (۲۵۰ نمونه ۵۰ گرمی) در شرایط سطحی...

<table>
<thead>
<tr>
<th>نام کامل</th>
<th>خانواده</th>
<th>نتیجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactuca sativa</td>
<td>Asteraceae</td>
<td>۲/۲</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td>Caryophyllaceae</td>
<td>۲/۲</td>
</tr>
<tr>
<td>Erysimum langstylum</td>
<td>Brassicaceae</td>
<td>۲/۲</td>
</tr>
<tr>
<td>Achillea vermicularis</td>
<td>Asteraceae</td>
<td>۳/۰</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td>Brassicaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Fumaria asepala</td>
<td>Papaveraceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Polygonum molliaforme</td>
<td>Polygonaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td>Fabaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td>Fabaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Echinocloa aryzoides</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Secale montanum</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Convolulaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Brassica longate</td>
<td>Brassicaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td>Rosaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Callipeltis cucullaria</td>
<td>Rubiaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Buglossoides arvensis</td>
<td>Boraginaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td>Chenopodiaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td>Lamiaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Ceratocephalus falcatus</td>
<td>Asteraceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Bonium cylindricum</td>
<td>Apiaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>Poaceae</td>
<td>۲/۰</td>
</tr>
</tbody>
</table>
جدول ۲. خصوصیات بذر های جوان‌ده از نمونه‌های سرگین

<table>
<thead>
<tr>
<th>طول عمر</th>
<th>درصد از کل بذر های جوان‌ده</th>
<th>تعداد بذرها (۰/۰۵ عدد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۷/۱</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۳۲/۹</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۷۴</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۷۱</td>
<td>۲۸</td>
<td>۲۸</td>
</tr>
<tr>
<td>۷۲</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۷۸</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۷۳</td>
<td>۲۸</td>
<td>۲۸</td>
</tr>
<tr>
<td>۷۷</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۸۱</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۸۳</td>
<td>۲۸</td>
<td>۲۸</td>
</tr>
<tr>
<td>۹۱</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۹۳</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>۹۳</td>
<td>۶۸</td>
<td>۶۰</td>
</tr>
</tbody>
</table>

رویشی و غیرجنسی نیز زادآوری دارند. (جدول ۲). بودند که معمولاً تولید بذر زیادی دارند. بیشتر گونه‌ها (۶۲ درصد گونه‌ها و ۲۶/۸ درصد بذرها) گونه‌های دارای بذر کوچک (طول بذر کمتر از ۲ میلی‌متر) بودند. با این حال Taraxacum و Bromus tomentellus (L.) officinale (Weber) بذر گونه‌های بزرگ (طول بذر بزرگتر از ۴ میلی‌متر) تولید می‌کنند. نیز در بین گونه‌ها دیده شدند. هم‌چنین اثر گونه‌های جوان‌ده از نمونه‌های سرگین (۴۲ درصد از گونه‌ها و ۹۳/۹ درصد از بذرها گونه‌های بودند. که نیز از طریق پرندگان و زاد آوری می‌کنند. در هر صورت تعداد محدودی از گونه‌ها (به وسیله مثل Agrostis stolonifera (L.) Cynodon dactylon (L.) از نمونه‌های سرگین کشت شده جوان‌ده زندگی که چه علاوه بر تکثیر جنسی معمولاً از طریق
شکل ۲. نمودار حاصل از آنالیز DCA (در مجموع ۲۷) از تغییرات) که تفاوت در ترکیب بذرهای نمونه‌های سرگین را با یکدیگر فراوانی نسبی گونه‌ها نشان می‌دهد. نام اختصاصی گونه‌ها شامل ۳ حرف اول اسم جنس و ۲ حرف اول اسم گونه است (ضیمه ۱).

شکل ۳. مقایسه میانگین مختصات نمونه‌های سرگین در امتیاز محور اول DCA (الف)، میانگین تعداد کل بذر (ب) و میانگین تعداد گونه بذري جوان‌زده در نمونه‌های سرگین ماه‌ها مختلف قابل بازه‌آمیزی از سن‌ها خواستار استاندارد در نمونه‌های هر ماه و نشان می‌دهد. حروف مختلف نشان‌گر اختلاف معنی‌دار بین مقادیر میانگین‌ها است (آزمون مقایسه میانگین تک‌ویکتیو، α=0.05).

بة. نتایج آنالیز واریانس نشان داد که اختلاف معنی‌داری بین تعداد بذرها در نمونه‌های سرگین ماه‌های مختلف وجود دارد (ب). با این حال آزمون مقایسه میانگین تک‌ویکتیو نشان داد که وابستگی بین سوابق در نمونه‌های سرگین ماه‌های مختلف و وابستگی بین تعداد بذرها در نمونه‌های سرگین ماه‌های مختلف وجود ندارد (ب) (آزمون F، درجه فri=۲، درجه فm=۵). به‌طور کلی نشان می‌گیرد که نمونه‌های سرگین ماه‌های مختلف در تعداد بذرها در نمونه‌های سرگین ماه‌های مختلف خودکاری ندارند (ب) (شکل ۲، ضیمه ۱).

نتیجه‌گیری: دستگاه‌های متابولیک دارای تأثیر شناختی بر سرگین ماه‌های مختلف می‌باشند.
گونه‌های سرگین در طول ماه‌های فصل چرای افزایش نسبی داشتند.

در مجموع تعداد گونه‌های گیاهان زده در گونه‌های سرگین به‌طوری که کمترین تعداد گونه بذری در نمونه‌های خردان و بیش‌ترین تعداد در نمونه‌های شهریور–مهر بوده‌است (شکل ۳–ج). برخی از نتایج آنالیز واریانس اختلاف معنایی بین تعداد گونه‌های بذری گیاهان ماهه مختلف مشاهده گردید (۴/۲۵ = ۶/۰۵ > F). در هر صورت نتایج آزمون مقایسه میانگین نتیجه‌گیری‌ها وجود اختلاف معنی‌دار بین تعداد گونه‌های بذری در نمونه‌های سرگین شهریور و خرداد را تأیید نمود (۰/۵ = ۰/۵ > F). این تفاوت به‌طور عمده مربوط به حضور احصاری گونه‌های بذری باعث شده‌است که در نمونه‌های شهریور – ماه سه‌شنبه (قسمت ۱).

بحث و توجه‌گیری

محتوی بذری کل نمونه‌های سرگین

در مجموع بذر ۵۰ گونه گیاهی توسط علف‌خواران اهلی در طول فصل چرای انتقال یافت که حدود نسبی از گونه‌های گیاهی بذری در ماه‌های اوت و سپتامبر و ژوئن به‌طور عمده مربوط به حضور گونه‌های بذری در نمونه‌های سرگین بوده است.

شکل ۲–ب. این تفاوت به‌طور عمده به فراوانی نسبی بذر گونه‌های C. inflatum، C. draba، C. macronata، (در ترتیب ۴/۲۵ = ۶/۰۵ > F و ۸/۳۵ = ۶/۰۵ > F) و B. tomentella (در ماه‌های خرداد و شهریور) مربوط می‌شود (قسمت ۱).

در مجموع تعداد گونه‌های بذری گیاهان زده در نمونه‌های سرگین در فصول چارا افزایش نسبی داشتند.

بیشترین تعداد گونه‌های بذری در نمونه‌های خرداد و بیش‌ترین تعداد در نمونه‌های شهریور–مهر بوده‌است (شکل ۳–ج). برخی از نتایج آنالیز واریانس اختلاف معنایی بین تعداد گونه‌های بذری گیاهان ماهه مختلف مشاهده گردید (۴/۲۵ = ۶/۰۵ > F). در هر صورت نتایج آزمون مقایسه میانگین نتیجه‌گیری‌ها وجود اختلاف معنی‌دار بین تعداد گونه‌های بذری در نمونه‌های سرگین شهریور و خرداد را تأیید نمود (۰/۵ = ۰/۵ > F). این تفاوت به‌طور عمده مربوط به حضور احصاری گونه‌های بذری باعث شده‌است که در نمونه‌های شهریور – ماه سه‌شنبه (قسمت ۱).

بحث و توجه‌گیری

محتوی بذری کل نمونه‌های سرگین

در مجموع بذر ۵۰ گونه گیاهی توسط علف‌خواران اهلی در طول فصل چرای انتقال یافت که حدود نسبی از گونه‌های گیاهی بذری در ماه‌های اوت و سپتامبر و ژوئن به‌طور عمده مربوط به حضور گونه‌های بذری در نمونه‌های سرگین بوده است.

شکل ۲–ب. این تفاوت به‌طور عمده به فراوانی نسبی بذر گونه‌های C. inflatum، C. draba، C. macronata، (در ترتیب ۴/۲۵ = ۶/۰۵ > F و ۸/۳۵ = ۶/۰۵ > F) و B. tomentella (در ماه‌های خرداد و شهریور) مربوط می‌شود (قسمت ۱).

در مجموع تعداد گونه‌های بذری گیاهان زده در نمونه‌های سرگین در فصول چارا افزایش نسبی داشتند.

بیشترین تعداد گونه‌های بذری در نمونه‌های خرداد و بیش‌ترین تعداد در نمونه‌های شهریور–مهر بوده‌است (شکل ۳–ج). برخی از نتایج آنالیز واریانس اختلاف معنایی بین تعداد گونه‌های بذری گیاهان ماهه مختلف مشاهده گردید (۴/۲۵ = ۶/۰۵ > F). در هر صورت نتایج آزمون مقایسه میانگین نتیجه‌گیری‌ها وجود اختلاف معنی‌دار بین تعداد گونه‌های بذری در نمونه‌های سرگین شهریور و خرداد را تأیید نمود (۰/۵ = ۰/۵ > F). این تفاوت به‌طور عمده مربوط به حضور احصاری گونه‌های بذری باعث شده‌است که در نمونه‌های شهریور – ماه سه‌شنبه (قسمت ۱).

بحث و توجه‌گیری

محتوی بذری کل نمونه‌های سرگین

در مجموع بذر ۵۰ گونه گیاهی توسط علف‌خواران اهلی در طول فصل چرای انتقال یافت که حدود نسبی از گونه‌های گیاهی بذری در ماه‌های اوت و سپتامبر و ژوئن به‌طور عمده مربوط به حضور گونه‌های بذری در نمونه‌های سرگین بوده است.

شکل ۲–ب. این تفاوت به‌طور عمده به فراوانی نسبی بذر گونه‌های C. inflatum، C. draba، C. macronata، (در ترتیب ۴/۲۵ = ۶/۰۵ > F و ۸/۳۵ = ۶/۰۵ > F) و B. tomentella (در ماه‌های خرداد و شهریور) مربوط می‌شود (قسمت ۱).

در مجموع تعداد گونه‌های بذری گیاهان زده در نمونه‌های سرگین در فصول چارا افزایش نسبی داشتند.

بیشترین تعداد گونه‌های بذری در نمونه‌های خرداد و بیش‌ترین تعداد در نمونه‌های شهریور–مهر بوده‌است (شکل ۳–ج). برخی از نتایج آنالیز واریانس اختلاف معنایی بین تعداد گونه‌های بذری گیاهان ماهه مختلف مشاهده گردید (۴/۲۵ = ۶/۰۵ > F). در هر صورت نتایج آزمون مقایسه میانگین نتیجه‌گیری‌ها وجود اختلاف معنی‌دار بین تعداد گونه‌های بذری در نمونه‌های سرگین شهریور و خرداد را تأیید نمود (۰/۵ = ۰/۵ > F). این تفاوت به‌طور عمده مربوط به حضور احصاری گونه‌های بذری باعث شده‌است که در نمونه‌های شهریور – ماه سه‌شنبه (قسمت ۱).
در هر صورت می‌توان از روش کافه تری (12) بای استفاده از
علوفه‌محصول بذر بی‌گونه‌های تمری و بررسی تکریک بذری
نمودن سرگن و ارتقاء آن با مشخصات مورفولوژیکی بذری
تغذیه شده به برسی اهمیت تحسین گرم کردن از عوامل
پرداخت.

در این مطالعه 12 گونه گیاهی در نمونه‌های سرگن
ثبت گردید. در حالی که در بیشتر مطالعات حضور تعداد
اندکی از بذر بی‌گونه‌های گندم گزارش شده است
(11 و 29). نتایج نشان داد که بذر به گونه مربوطی و
B. tomentosum
مربوط به تعداد قابل توجهی توسط سرگن
مربوط می‌گردد. این گیاه و گونه‌های گندم مشابه دارای
تولید بذر کم یا برخی از گونه‌های مختلف سلسله سالام
مانند آنها با عبور از مراحل علفی گیاهان کم باشند
(38). در مکان‌های مطالعه نشده، بذر از گیاه پس از اتمام
علوفه سبز و در دوره رشد گیاهان (نیر ماه) مورد
مصرف قرار داد که بذر به گونه به بلور کامل رسیده و
دارای پوست نسبتاً نخست بوده. بذر سابقه بذر این
گیاهان از دستگاه علفی گیاهان احتمالاً تنه منجر به
تخربی پوسته و افزایش میزان جوانه زنی آنها می‌شود.
همچنین، کیفیت پایین علفه مصرفی توسط علفی گیاهان پس
از شروع دوره رشد گیاهان می‌تواند منجر به راست‌دم
گردد و در تیره سالام مانند بذر این گیاهان در
کم‌هممت در نتیجه مطالعه نشده این گیاهان در
همگان عبور از دستگاه علفی گیاهان گردید (25). در هر
صورت بایستی در مطالعه‌های جدایگانه صحبت این دو فرضیه
با استفاده از روش کافه تری با بذر گیاهان گنده بررسی
گردد.

محتوای بذری نمونه‌های سرگن در ماه‌های مختلف
بی‌تیب بیشترین و کم‌ترین تعداد بذر جوان‌زده در
نمونه‌های سرگن ماه‌های تیر و خرداد بی‌گونه اکنون
مشابه داده شده در ارتباط با نتایج گزارش‌های زیادی

c
d

59
کاربرد مدل‌سازی اکوسیستم‌های گرایایی
نتایج این مطالعه انتقال بذر گونه‌های متعددی از جمله گونه‌های مرغوب و خوشخورک را از طریق سرگین علفخووران اهی نشان داد. با توجه به زادآوری و تکثیر جنسی (از طریق بذر) اغلب گیاهان منطقه، انتقال بذر و توزیع علفخووران به فواصل دور از یک‌هیاه ناتوان باعث حفظ و ایجاد تنش زیستی در این گونه‌ها (کلودیت) می‌شود (16، 2044). دانش انتقال بذر گیاهان به همه‌ها می‌تواند صحت جواز در دسترس قابل توجهی باشد. علفخووران به مقدار فیبر و هدف به بانک بذر خاک برای احیای طبیعی پوشش گیاهی در یک‌بازه زمانی قبل قبول بنامید. مدیریت صحت رابطه متقابل علفخووران و پوشش گیاهی با دام و مرغ برای بهره‌گیری مناسب از علفخووران بهی‌پوشان حاملان که بدون فضای بذر گیاهان مرغوب و هدف به مکان‌هایی که به دلیل محدودیت بندی می‌باشند، ضروری است. در این ارتباط ناحیه کارگاه‌های آموزشی – تربیتی برای بهبود و ترویجان با ارائه مثال‌های عملی و قابل لمس از انتقال بذر گیاهان مرغوب و مربوط (مانند گونه B. tomenellus) علفخووران توصیه می‌گردد.

ماه شهروی، اگرچه استراحت و چرای علفخووران نیز در تغییر تعداد گونه مبتلا به نمونه‌های سرگین تقسیم دارد، بذر تعداد قابل توجه گونه‌گیاهی از نمونه‌های سرگین علفخووران جوانه زدن که به بخش‌بندی اکوسیستم‌های (Riparian ecosystems) حاشیه‌ای مزرعه کشاورزی، تولید آب و یا اطلاعات آب‌رسانی می‌باشد. این گیاهان بدلیل رطوبت قابل دسترس بالا و گیاهان که گونه‌های خشک کننده در منطقه انتقال می‌پذیرند. انتقال این گیاهان علفخووران در مطالعه دیگران نیز گزارش شده است (15 و 25).

مقایسه ترکب دبیر نمونه‌های سرگین، نه تنها تغییر معیار در بین ترکب دبیر نمونه‌های شهریور با نمونه‌های دیگر ماه‌ها را نشان داد. این نتایج در انتقال بذر و رمده از (M. sativa) و در A. verus سطح مکانی مرطب به حضور بذر گونه علفخووران پویانه به تراکم بالای بذره گونه علفخووران در نمونه‌های شهریور ماه بود. این ماه بدلیل در دسترس نبودن علفخووران بر گیاهان علفخووران که به سمت گیاهان خشک و پوشانه‌های محو و خشک کردن می‌باشد. این گیاهان به دلیل چرای کمتر در مقایسه با گیاهان خشک‌کننده که در طول فصل رویش تحت چرای مرطوب بوده‌اند. بخش بیشتری از منابع غذایی خود را به تولید گزینه دارد که به دلیل چرای کمتر در نتیجه این اثری پوشانه‌ای بر روی یک‌هیاه خود داشته که در صورت چرا امکان انتقال بذرهن در طریق سرگین وجود دارد (7). در هر صورت تأکون، مطالعهای منتقل مورد استفاده

1. ایرانی، م. ع. سعادی، فر. م. زیاری و ش. فاطمه. 1381. مطالعات شناسایی جوزه آب‌پیچ کرچم‌ی (از زیر حوزه آب‌پیچ) سد. گلابی‌کان. گزارش پوشش گیاهی و مرتع. جلد 2. دانشگاه، منابع طبیعی، دانشگاه صنعتی اصفهان. 305 صفحه.
انتقال بذر توسط علفخواران اهلی در اکوسیستم‌های مرتعی منطقه …

2. بصیری، م. ا. جالایان و م. و. هاشمی. 1388. تحقیق بذر و مطالعه رویشگاه گیاهان بومی مرتعی منطقه فردی‌ن. دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان. 104 صفحه.

3. بصیری، م. و. ایرانی. 1388. تغییرات بوشک گیاهی پس از ۱۶ سال فرق های آزمایشی در منطقه زاگرس مرکزی. مجله مرتع ۳ (۲) 155-۸۰۱.

4. مدرس‌هاشمی، س. و. ز. بردار. ۱۳۷۹. آزمایش بذر گیاهان اندمیک ایران. جلد ۱. انتشارات سپهر. ۱۰۰ صفحه.

5. مظفریان، و. و. ر. بانگی. ۱۳۷۶. رده بندی گیاهی انتشارات امیر کبیر، تهران. ۱۷۲ صفحه.

6. والتر، و. و. ۱۳۷۶. کلیه بذر انتشارات جهاد جهادگران، جلد ۱. انتشارات جهاد دانشگاهی تهران. ۴۸۰ صفحه.


<table>
<thead>
<tr>
<th>نام علمی گونه</th>
<th>فاکتور گونه</th>
<th>نام خانواده</th>
<th>تعداد کل بذر</th>
<th>جوانه‌سازی</th>
<th>مردان</th>
<th>شهرهور</th>
<th>مردان</th>
<th>شهرهور</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerastium inflatum</td>
<td></td>
<td>Caryophyllaceae</td>
<td>108</td>
<td>66</td>
<td>71.1</td>
<td>29.7</td>
<td>6.2</td>
<td>16.1</td>
</tr>
<tr>
<td>Cardaria draba</td>
<td></td>
<td>Brassicaceae</td>
<td>82</td>
<td>50</td>
<td>76.2</td>
<td>20.3</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Robeschia schimperi</td>
<td></td>
<td>Brassicaceae</td>
<td>21</td>
<td>14</td>
<td>21.5</td>
<td>15.9</td>
<td>7.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td></td>
<td>Poaceae</td>
<td>16</td>
<td>9</td>
<td>21.5</td>
<td>44.2</td>
<td>5.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Noaea mucronata</td>
<td></td>
<td>Chenopodiaceae</td>
<td>5</td>
<td>2</td>
<td>10.5</td>
<td>6.4</td>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td></td>
<td>Chenopodiaceae</td>
<td>6</td>
<td>4</td>
<td>10.5</td>
<td>3.7</td>
<td>3.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td></td>
<td>Brassicaceae</td>
<td>5</td>
<td>3</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td></td>
<td>Asteraceae</td>
<td>4</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td></td>
<td>Asteraceae</td>
<td>3</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Senecio glaucus</td>
<td></td>
<td>Asteraceae</td>
<td>3</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>Fabaceae</td>
<td>3</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Sipha barbata</td>
<td></td>
<td>Poaceae</td>
<td>3</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td></td>
<td>Fabaceae</td>
<td>3</td>
<td>2</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Alyssum inflatum</td>
<td></td>
<td>Brassicaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td></td>
<td>Poaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Gypsophila virgata</td>
<td></td>
<td>Caryophyllaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td></td>
<td>Asteraceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td></td>
<td>Poaceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Erysimum lanseystulum</td>
<td></td>
<td>Brassicaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Fumaria aspela</td>
<td></td>
<td>Papaveraceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Hordeum violaceum</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td></td>
<td>Fabaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Centaurea hristanica</td>
<td></td>
<td>Asteraceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Cercophasphus falcatus</td>
<td></td>
<td>Asteraceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Papaver orientale</td>
<td></td>
<td>Papaveraceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Agropyron intermedium</td>
<td></td>
<td>Poaceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Aegilops kotschyi</td>
<td></td>
<td>Poaceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Asperugo procumbens</td>
<td></td>
<td>Boraginaceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Astragalus verus</td>
<td></td>
<td>Fabaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Polygonum molliaforme</td>
<td></td>
<td>Polygonaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Echinochloa oryzoides</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Secale montanum</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td></td>
<td>Malvaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Callipeltis cucullaria</td>
<td></td>
<td>Rubiaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Chenopodium botrys</td>
<td></td>
<td>Chenopodiaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>Fabaceae</td>
<td>5</td>
<td>4</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td></td>
<td>Plantaginaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Convulvalus arvensis</td>
<td></td>
<td>Convolvulaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Galium verum</td>
<td></td>
<td>Rubiaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td></td>
<td>Poaceae</td>
<td>1</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Achillea vernicus</td>
<td></td>
<td>Asteraceae</td>
<td>3</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Brassica elongata</td>
<td></td>
<td>Brassicaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Potentilla kurdica</td>
<td></td>
<td>Rosaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Trigonella elliptica</td>
<td></td>
<td>Fabaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Bonum cylindricum</td>
<td></td>
<td>Apiaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Buglossoides arvensis</td>
<td></td>
<td>Boraginaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Mentha pulegium</td>
<td></td>
<td>Lamiaceae</td>
<td>2</td>
<td>1</td>
<td>10.5</td>
<td>2.3</td>
<td>2.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>