بررسی ساختار تیپ‌های مختلف چنگلی با استفاده از شاخه‌های نزدیک‌ترین همسایه

(مطالعه موردی: بخش گرازین چنگل خیرود)

وحید علی‌جانی، جهانگیر فتحیی، محمدرضا زیری و محمدرضا مروی مهاجر

چکیده

برای مدل‌سازی صحیح اکوسیستم‌های چنگلی داشتن اطلاعات کافی در رابطه با ساختار گونه‌های درختی ضروری می‌باشد. در این تحقیق ساختار گونه‌های درختی تیپ‌های راش (Carpinus) و ممر (Fagus) با توجه به گونه‌های مورد بررسی و مقایسه فرآیند گرفتگی، اطلاعات مورد استفاده برای این تحقیق از ۳۴۹ قطعه نمونه ۵۰۰۰ اکسپرم می‌باشد که به‌روش منظم تصادفی در بخش گرازین چنگل خیرود یافته شده‌اند. گروه آموزشی و با استفاده از نرم‌افزار نرم‌افزار تشخیص‌های زاویه‌ای آنچکان‌های آمیختگی این تحقیق از شاخه‌های Crancod (Ver. 1.3) یک‌تخته نشان دهنده موجودی مکانی تصادفی باید درختن چهار تیپ مورد بررسی که به‌دست آمده از این شاخه‌های نشان داد که اکثر گونه‌های دارای رقابت درون گونه‌ای و سایر گونه‌های مورد بررسی دارای رقابت بین گونه‌های مشابه می‌باشند. این نشانه‌ها برای ادامه پژوهش و ارتقای نشان دهنده شپاه شیب نسبی تیپ‌های مورد بررسی از نظر‌بینی ورزش‌گی در این پژوهش. در این تحقیقی از این دو شاخه‌ها نسبی گونه‌های Crancod بهشت، میانگین شاخه‌های ابعاد قطر برای سابقه و گونه‌های مشابه در تیپ‌های مختلف، نشان دهنده عدم وجود اختلاف معنی‌دار بین آنها از نظر ورزش‌گی موجودی مکانی ایجاد کرده. نتایج در مورد مورد بررسی چنگل چنگلی در تیپ‌های مورد بررسی بود. برای تشخیص دارای پژوهش در این تحقیقی از توانایی بالایی در Tilia begonifolia مشاهده شده و ارتباط بود. بررسی اختلافات دیده و در گونه‌های مختلف گونه‌های Tilia begonifolia و چنگلی در تیپ‌های مورد بررسی بود. ابعاد درختن در این تحقیقی از توانایی بالایی در Tilia begonifolia مشاهده شده و ارتباط بود. در این تحقیقی از توانایی بالایی در Tilia begonifolia

واژه‌های کلیدی: ساختار تیپ‌های مختلف، چنگل‌های میرکانی، مواقف مکانی، آمیختگی، ابعاد درختان

1. گروه چنگل‌های اکوسیستم‌های چنگلی، کپسول کشاورزی و منابع طبیعی، دانشگاه تهران

jfeghhi@ut.ac.ir

* : مسئول مقالات، پست الکترونیکی:
مقدمه

چنگال‌های هیبردی ایران، به عنوان یکی از آخرین نواحی پاک‌دریز شده از چنگال‌های هیبردی دوران پس از ما ماهی شده‌اند (۱۶). یا وجود این چنگال‌ها مطلبی کمی از مصالح کمکی روی پوشش‌های گیاهی (کمتر از یک درصد) نشان می‌دهد. یک با توجه به فاصله خان، می‌تواند خدماتی جهت حفظ و جنبه دوبهبی دارد و به عنوان یک منبع تولیدی دارای ارزش‌های مفیدی و مادي زیادی است (۱۶).

مطالعه مرتب به ساختار چنگال‌های یکی از مباحث مورد توجه و ضروری محسوساً در راستای اهداف گیاهشناسی نژاده‌های می‌باشد. به منظور بررسی ساختار چنگال‌های آن ساختار که تعیین مشخصات از ساختار و نیازهای آن صورت گرفته. در میان نتایج کمک‌رسان مشخصاتی درنظر گرفته شده و یکی از موفقیت‌های مکانی در نتایج مشخص کننده گونه‌ای پرآزمایش آنها می‌باشد که ممکن است از یکی از گونه‌های کیانی، تصادفاتی، مغزی و یا حالتی مانند آنها پیروی کند (۳). تنوع گونه‌های اصلی بررسی چیدمان مکانی گونه‌های مختلف در ارتباط با یکدیگر می‌باید و تنوع پدیدار در ابتدا در برگ‌نامه چیدمان مکانی مشخصه‌هایی از جمله فاصله و ارتفاع است (۳). به منظور بررسی ساختار چنگال‌های یکی از محقق‌های کمک‌رسان است. در مطالعات متعددی جنبه‌های مختلف ساختار چنگال مورد بررسی قرار گرفته‌اند. ولی برای اولین بار کاربرد شاخه‌های مذکور در گونه‌های چنگال‌های ایران با تحقیقات که روا گونه‌های Ulmus glabra (Carpinus-Fagus) گونه‌های ایرانی تیپ ممر-رئاس (۶). چنگال خیروک انجام شد مورد بررسی قرار گرفت (۵) و ۶.

با توجه به اهمیت زیاد گونه‌های هرکانه در گونه‌های چنگال‌های ایران، لازم است که در تمام برخوردی ویژه توسط به منظور استخدام شما کشور حفظ و گسترش این چنگال‌ها به عنوان مهم ترین و با ارزش‌ترین اکوسیستم‌های چنگال‌های کشور و منبع مهم تولید چوب و سایر فرآورده‌های چنگال‌های منظم قرار گیرد (۷). به منظور مصدومت بی‌نواخته‌ای این منابع با ارزش به‌سمت اوران درک صحیحی از ساختار این چنگال‌ها ضروری است. به همین دلیل هدف از این

که و همکاران در بررسی این جنبه‌ها با توافقی

پایلاً آنها در تشریح دقیق ساختار توده و همچنین بررسی

سیر تکامل توده شیاره کردند (۱۸). به همین دلیل، به‌نواخته‌ای این منابع با توافقی به‌نواخته‌ای در مورد چنگال‌های ایران، لازم است که در تمام برخوردی ویژه توسط به منظور استخدام شما کشور حفظ و گسترش این چنگال‌ها به عنوان مهم ترین و با ارزش‌ترین اکوسیستم‌های چنگال‌های کشور و منبع مهم تولید چوب و سایر فرآورده‌های چنگال‌های منظم قرار گیرد (۷). به منظور مصدومت بی‌نواخته‌ای این منابع با ارزش به‌سمت اوران درک صحیحی از ساختار این چنگال‌ها ضروری است. به همین دلیل هدف از این

۱۲

اکولوژی کاربردی/ سال دور/ شماره سوم/ بهار ۱۳۹۲
شکل ۱. نمودار جنگل‌ها بخش گزاری‌کننده‌های آمرشی و پوشه‌ای خیرود

تحقیق علاوه بر کمیسیون ساختار تپه‌های جنگل‌های بخش گزاری‌کننده خیرود، مقایسه ساختار آنها با یکدیگر می‌باشد.

مواد و روش‌ها

مشخصات منطقه مورد مطالعه

این مطالعه در تپه‌های راش (Fagus), راش-ممرز (Fagus-Carpinus), ممرز-رام (Carpinus-Fagus) و ممرز-بلوط (Carpinus-Quercus) بخش گزاری‌کننده که مساحتی در حدود 1000 هکتار، سومین بخش از جنگل آموزشی و پوشه‌ای دانشگاه مباحث طبیعی دانشگاه تهران (جنگل خیرود) می‌باشد، انجام شده است (شکل ۱). سه‌گ مادر این بخش آمک و متعلق به دوران زوراکیسک علاوه بر خاک این منطقه به‌طور عمدی جزء خاک‌های قوه‌های جنگلی می‌باشد. میزان بزرگ‌تریکی در این بخش در حدود ۱۳۵۰۰ میلی‌متر در سال است که حداقل آن در تیر ماه و حداکثر آن در مهر ماه ریزش می‌کند. همچنین

شناخت‌های مورد مطالعه

در این تحقیق به منظور برسی ساختار تپه‌های مذکور مشخصاتی از جمله نوع گونه، قطر برابر سبب، ارتفاع و همچنین فاصله و آزمایش درخت نسبت به مرکز قطعات می‌باشد. سپس داده‌های جمع‌آوری شده به منظور انجام اقیام منطقه با استفاده از ضریب آمبرژه مطلوب سرد تعبیه شده است (۱).

در این تحقیق به منظور کمیسیون ساختار تپه‌های ذکر به‌کار رفته است. مقدار حداقل نمونه در تیپ 1000 متر مربع که براساس طرح منظم تصادفی پیاده شده‌اند. استفاده شد. از این تعداد 55 قطعه نمونه در تیپ Fagus انتخاب شدند. ۵۶ قطعه نمونه در تیپ Fagus-Carpinus و ۲۶ قطعه نمونه در تیپ Carpinus-Fagus و Carpinus-Quercus قرار گرفته است.
جدول 1. تشریح شاخص‌های ساختاری میان بر تندیک‌ترين هم‌سایه‌ها (بدون واحده)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تشریح</th>
<th>فرمول</th>
<th>ترتیب</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{ij})</td>
<td>1 (\rightarrow) (a_j < a_i)</td>
<td>(W_i = \frac{1}{n} \sum_{j=1}^{n} v_{ij})</td>
<td>زاویه پیکوواخت</td>
<td>تز وی مورد سپری</td>
</tr>
<tr>
<td>(v_{ij})</td>
<td>1 (\rightarrow) (a_j \geq a_i)</td>
<td>(D_i = \frac{1}{n} \sum_{j=1}^{n} v_{ij})</td>
<td>تغییر آمپاتکی</td>
<td>ابعاد قطر برای سپری</td>
</tr>
<tr>
<td>(v_{ij})</td>
<td>(\text{یگیچی} \neq \text{یگیچی})</td>
<td>(\sum_{j=1}^{n} v_{ij})</td>
<td>تغییر آمپاتکی</td>
<td>ابعاد قطر برای سپری</td>
</tr>
<tr>
<td>(v_{ij})</td>
<td>(\text{یگیچی} \neq \text{یگیچی})</td>
<td>(\sum_{j=1}^{n} v_{ij})</td>
<td>ابعاد ارتفاع</td>
<td>ابعاد ارتفاع</td>
</tr>
<tr>
<td>(v_{ij})</td>
<td>(\text{یگیچی} \neq \text{یگیچی})</td>
<td>(\sum_{j=1}^{n} v_{ij})</td>
<td>ابعاد ارتفاع</td>
<td>ابعاد ارتفاع</td>
</tr>
</tbody>
</table>

\(S_{ij}\) فاصله درخت مراجع تا همسایه‌ها

\(D_i = \frac{1}{n} \sum_{j=1}^{n} s_{ij}\) تراکم درختان

محاسبات ساختاری، آماده و محاسبات مربوط در نرم‌افزار Crandoc (Ver 1.3) گرفت. در جدول 1 هر یک از شاخص‌ها یک فاکتور است. توضیح داده شده است. یکی از مزایای شاخص‌های بزرگ کار رفته در این حضور همسایگان در نظر گرفتن تعداد مختلف همسایگان باشد. اما در این تحقیق بررسی تحقیقات پیشین چگاه درخت همسایگان به درخت مرجع در نظر گرفته شد و شاخص‌های ساختاری برای هر گونه و در هر تیپ جنگلی ورود بررسی قرار گرفتند (9, 4, 11, 13, 14).

19 شاخص زاویه پیکوواخت (\(W_i\)) بررسی محاسبه زاویه بین درختان همسایه و مرجع (\(a_0\)) و مقیاس آن با زاویه استاندارد (\(a_0\)) در هنگام استفاده از چهار درخت همسایه (72 درجه می‌باشد) به بررسی موقعیت مکانی درختان.
نوعی از شکل ۲ نحوه عمل روش تشخیص حاشیه ژتیک‌ترين یک کروم‌برداری بوده که از ارزش‌های این دو شکل نیز مaname شناخته شده‌اند. این ارزش‌های شناخته‌شده با توجه به مقادیر سطح حاشیه و ارتفاع‌پذیری می‌باشند.

نتایج
در این تحقیق با استفاده از روش تشخیص حاشیه ژتیک‌ترين، میانگین یکپارچه‌ای به مقداری زاویه‌ای که در هر چهار تیب Fagus Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus یکسایی و برای با (0/۵۳ /۳۰) محاسبه شده که نشان دهنده چیدمان تصادفی درختنی نسبت به یکدیگر است. همچنین در هر تیب ژتیکی میانگین این شاخص برای گونه‌های مختلف محاسبه و نتایج حاصل از آن در جدول ۲ آمده است. نتایج حاصل از این شاخص نشان دهنده چیدمان کم و بیش تصادفی برای آن گونه‌های مورد طالعه می‌باشد. البته در برخی موارد تناوب مختلفی به دست آمده که می‌توان به میانگین این شاخص در Fagus-Carpinus که در تیب ۲/۵ (0/۲۵) و Tilia begonifolia روش آرگ‌فرش بین n می‌ماند نتایج داده شده است.

شکل ۲. نحوه عمل روش تشخیص حاشیه ژتیک‌ترين یک کروم‌برداری بوده که از ارزش‌های این دو شکل نیز مانند شناخته شده‌اند. این ارزش‌های شناخته‌شده با توجه به مقادیر سطح حاشیه و ارتفاع‌پذیری می‌باشند.
جدول ۲. تعداد گونه‌های ساختاری قبل و بعد از تصحیح حاشیه به روش نزدیکترین همسایه (بدون واحد)

<table>
<thead>
<tr>
<th>تیپ‌های مورد مطالعه</th>
<th>Carpinus-Quercus</th>
<th>Carpinus-Fagus</th>
<th>Fagus-Carpinus</th>
<th>Fagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاکس</td>
<td>839</td>
<td>372</td>
<td>654</td>
<td>259</td>
</tr>
<tr>
<td>کارپینوس</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>فاگوس</td>
<td>731</td>
<td>322</td>
<td>569</td>
<td>238</td>
</tr>
</tbody>
</table>

جدول ۳. مقدار سلول‌های فاکسی گونه‌های درخت موجود در تیپ‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>سلول‌های</th>
<th>Carpinus-Quercus</th>
<th>Carpinus-Fagus</th>
<th>Fagus-Carpinus</th>
<th>Fagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. terminalis</td>
<td>0/55</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
</tr>
<tr>
<td>U. glabra</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>P. communis</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>D. lotus</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>T. beginifolia</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>A. velutinum</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>Q. castaneifolia</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>A. subcordata</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>C. betulus</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
<tr>
<td>F. orientalis</td>
<td>0/56</td>
<td>0/50</td>
<td>0/24</td>
<td>0/12</td>
</tr>
</tbody>
</table>

جدول ۲ مفهوم مادگی‌های شاخه‌ای گونه‌های درختی موجود در تیپ‌های مختلف (بدون واحدهای گونه‌ای)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>Carpinus</th>
<th>Fagus orientalis</th>
<th>Quercus</th>
<th>Tilia</th>
<th>T. begoniifolia</th>
<th>D. lotus</th>
<th>A. velutina</th>
<th>A. subcordata</th>
<th>C. alba</th>
<th>C. betulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>می‌که‌ی یک</td>
<td>۰/۸۱</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۶۰</td>
<td>۰/۶۰</td>
<td>۰/۶۰</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۰/۴۵</td>
<td>۰/۴۵</td>
</tr>
<tr>
<td>می‌که‌ی دو</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>می‌که‌ی سه</td>
<td>۰/۷۶</td>
<td>۰/۷۶</td>
<td>۰/۷۶</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>می‌که‌ی چهار</td>
<td>۰/۶۸</td>
</tr>
</tbody>
</table>

چهرگی موسط گونه‌های Carpinus و Fagus orientalis و در اکثر موارد چهرگی زیاد گونه‌های Quercus و Tilia و در گونه‌های Alnus subcordata castaneifolia betulus Acer velutinum قرار گرفت. بود. اما تابع به‌دست آمده از Pyrus communis و begonifolia شاخه‌ای یک‌تایی تا نزدیک درصد همبستگی در تیپ‌های Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus بهترین برای با ۰/۴۹ و ۰/۷۷ محاسبه شد که به حریق نشان دهنده تراکم بیشتر درختان در تیپ Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus Fagus-Carpinus است. در این تحقیق به منظور کم‌سازی تنویع اباع درختان، در مشخصه قطر برای سینه و ارتفاع درختان مورد بررسی قرار گرفتند. مقادیر مادگی‌های شاخه‌ای اباع قطر برای سینه در تیپ‌های Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus Fagus-Carpinus بهترین برای با ۰/۴۹ و ۰/۷۷ محاسبه شد. در چند مورد ارتفاع درخت شاخه‌های Carpinus-Fagus Fagus-Carpinus Fagus-Carpinus بهترین برای با ۰/۴۹ و ۰/۷۷ محاسبه شد. در چند مورد فاکتورهای مادگی‌های باعث حاصل اباع در این آزمون کاهش می‌یابد در چرخه‌های درختی شاخه‌ای مختلف از نظر ویژگی‌های تنویع موقعیت مکانی، تنویع اباع درختان و تنویع اباع ارتفاع‌ها شاخه‌ای ارتفاع نشان نمی‌دهد و تیپ‌های مختلف تنها از نظر آمیختگی گونه‌های اختلافات معنی‌داری را در سطح ۹۹ درصد نشان دادند.

بحث
در جنگل‌های نوین، کمی سازی ساختار جنگل‌ها یا یک دامنه درختان موجود در تیپ‌های مذکور می‌باشد. براساس نتایج حاصل از این شاخه‌ای تیپ Carpinus-Fagus-Carpinus در اکثر دارای کمرنگ آمیختگی و تیپ Carpinus برای میانگین ارتفاع درختان در جدول ۴ ارائه شده است. مقادیر مادگی‌های شاخه‌ای گونه‌های Carpinus-Quercus و Carpinus-Fagus Fagus-Carpinus Fagus-Carpinus پس از کم‌سازی ساختار تیپ‌های مختلف با استفاده از آزمون کاهش اسکوئر خیه، این تنوع موقعیت مکانی تنوع آمیختگی و تنویع اباع درختان در تیپ‌های مختلف مورد مقایسه قرار گرفت. در جدول ۷ سطح معنی‌داری در سطح ۹۹ درصد برای شاخه‌های مذکور ارائه شده است. نتایج حاصل از این آزمون نشان می‌دهد که گونه‌های درختی شاخه‌ای مختلف از نظر ویژگی‌های تنویع موقعیت مکانی، تنویع اباع درختان و تنویع اباع ارتفاع‌ها شاخه‌ای ارتفاع نشان نمی‌دهد و تیپ‌های مختلف تنها از نظر آمیختگی گونه‌های اختلافات معنی‌داری را در سطح ۹۹ درصد نشان دادند.
جدول ۵. مقادیر میانگین شاخص ابعاد قطر بر اب سپه گونه‌های درختی موجود در تپه‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>S. normalis</th>
<th>P. commutata</th>
<th>D. latas</th>
<th>T. orientalis</th>
<th>A. velatum</th>
<th>A. subcordata</th>
<th>Q. castaneifolia</th>
<th>C. betuloides</th>
<th>F. orientalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. normalis</td>
<td>0.22</td>
<td>0.36</td>
<td>0.28</td>
<td>0.54</td>
<td>0.09</td>
<td>0.59</td>
<td>0.09</td>
<td>0.28</td>
<td>Fagus</td>
</tr>
<tr>
<td>P. commutata</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0/60</td>
<td>0/68</td>
<td>0/68</td>
<td>0/31</td>
<td>Fagus-Carpinus</td>
</tr>
<tr>
<td>D. latas</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/25</td>
<td>0/64</td>
<td>0/67</td>
<td>0/52</td>
<td>Carpinus-Fagus</td>
</tr>
<tr>
<td>T. orientalis</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/55</td>
<td>0/56</td>
<td>0/56</td>
<td>0/52</td>
<td>Carpinus-Quercus</td>
</tr>
<tr>
<td>A. velatum</td>
<td>0.19</td>
<td>0.5</td>
<td>0.55</td>
<td>0.62</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>Carpinus-Quercus</td>
</tr>
</tbody>
</table>

جدول ۶. مقادیر میانگین شاخص ابعاد ارتفاع گونه‌های درختی موجود در تپه‌های مختلف (بدون واحد)

<table>
<thead>
<tr>
<th>گونه‌های مورد مطالعه</th>
<th>S. normalis</th>
<th>P. commutata</th>
<th>D. latas</th>
<th>T. orientalis</th>
<th>A. velatum</th>
<th>A. subcordata</th>
<th>Q. castaneifolia</th>
<th>C. betuloides</th>
<th>F. orientalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. normalis</td>
<td>0.22</td>
<td>0.36</td>
<td>0.28</td>
<td>0.54</td>
<td>0.09</td>
<td>0.59</td>
<td>0.09</td>
<td>0.28</td>
<td>Fagus</td>
</tr>
<tr>
<td>P. commutata</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0/60</td>
<td>0/68</td>
<td>0/68</td>
<td>0/31</td>
<td>Fagus-Carpinus</td>
</tr>
<tr>
<td>D. latas</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/25</td>
<td>0/64</td>
<td>0/67</td>
<td>0/52</td>
<td>Carpinus-Fagus</td>
</tr>
<tr>
<td>T. orientalis</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/55</td>
<td>0/56</td>
<td>0/56</td>
<td>0/52</td>
<td>Carpinus-Quercus</td>
</tr>
<tr>
<td>A. velatum</td>
<td>0.19</td>
<td>0.5</td>
<td>0.55</td>
<td>0.62</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>Carpinus-Quercus</td>
</tr>
</tbody>
</table>

جدول ۷. مقادیر سطح معنی‌داری شاخص‌های ساختاری (بدون واحد)

<table>
<thead>
<tr>
<th>شاخص‌های مورد مطالعه</th>
<th>ابعاد ارتفاع</th>
<th>آمپتنیک</th>
<th>زاویه یکپاکخت</th>
<th>معنی‌داری در سطح 95 درصد اطمینان</th>
<th>معنی‌داری در سطح 99 درصد اطمینان</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. orientalis</td>
<td>0.227</td>
<td>0/24</td>
<td>0/76</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>C. betuloides</td>
<td>0.129</td>
<td>0/41</td>
<td>0/141</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Q. castaneifolia</td>
<td>0.325</td>
<td>0/174</td>
<td>0/73</td>
<td>Q. castaneifolia</td>
<td>Q. castaneifolia</td>
</tr>
<tr>
<td>A. subcordata</td>
<td>0.267</td>
<td>0/38</td>
<td>0/42</td>
<td>A. subcordata</td>
<td>A. subcordata</td>
</tr>
<tr>
<td>A. velatum</td>
<td>0.209</td>
<td>0/25</td>
<td>0/35</td>
<td>A. velatum</td>
<td>A. velatum</td>
</tr>
<tr>
<td>T. begonifolia</td>
<td>0.345</td>
<td>0/198</td>
<td>0/32</td>
<td>T. begonifolia</td>
<td>T. begonifolia</td>
</tr>
<tr>
<td>U. glabra</td>
<td>0.373</td>
<td>0/162</td>
<td>0/32</td>
<td>U. glabra</td>
<td>U. glabra</td>
</tr>
</tbody>
</table>

معنی‌داری در سطح 95 درصد اطمینان: " معنی‌داری در سطح 99 درصد اطمینان: "
بررسی ساختار نیسه مختلف جنگلی با استفاده از شاخچ‌های ...

سومین جنبه ساختاری مورد مطالعه در این تحقیق، شاخچ‌های مختلف نیسه در چهار تیپ مورد مطالعه قرار گرفتند که با کمک اسکیم و نقشه ماشینی ایجاد شدند.

 textual content is in Persian and refers to the structure of trees in different stands. The document discusses the differences in tree structure and their implications for forest management. The text is rich with scientific terminology and references to specific species and conditions.

2. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

3. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

4. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

5. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

6. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

7. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

8. Acer velutinum, Tilia begonfolia, Fagus orientalis, Carpinus betulus, and Tilia begonfolia. The authors examined the effects of forest structure on biodiversity using neighborhood-based variables. The study was conducted in different areas of Iran, using data from the years 2018 and 2019. Each area was divided into smaller units, and the data were analyzed using statistical methods. The results showed that the use of neighborhood-based variables can help in understanding the complexity of forest structure and its relationship with biodiversity. A deeper understanding of these relationships can help in the management and conservation of forest ecosystems.

