ارزیابی کارایی انرژی و تحلیل اقتصادی تولید یپاز (Allium cepa L.) در استان خراسان رضوی

فاطله حسن زاده اول و پرویز رضوآنی مقدم

(تاریخ دریافت: 17/1391/7/22؛ تاریخ پذیرش: 1391/7/22)

چکیده

افزایش کارایی انرژی و استفاده از منابع انرژی قابل تجدید در سیستم‌های کشاورزی فشرده رایج وابستگی به منابع سوخت فسیلی را کاهش می‌دهد. هدف از این مطالعه، تعیین میزان انرژی ورودی و خروجی در تولید محصول یپاز و انجام آنالیز‌های اقتصادی در استان خراسان رضوی بود. به‌منظور دستیابی به این هدف، پرداختن به فناوری طراحی شده و به‌طور کاملاً گرمایش‌زده یپاز کار در این استان انتخاب شدند. پرداخته‌ها به‌صورت چندرو در ماه‌های اردیبهشت و خرداد 1390 جمع آوری شد. نتایج نشان داد که کل انرژی ورودی برای تولید یپاز در استان خراسان رضوی 982799 مگاوات بر هکتار بود. حدود 50/9% از این انرژی درصد به کنترل کششی و 47/1% آن مربوط به کود تهیه‌شده بود. میانگین عملکرد یپاز در مزارع تحت آبیاری 2773 کیلوگرم بر هکتار بوده‌است. انرژی خالص و بهره‌وری انرژی بهترین 1899 مگاوات بر هکتار و 274/0 کیلوگرم بر مگاوات بود. و نسبت انرژی خروجی به انرژی ورودی 0/19 بود. نسبت انرژی خروجی به ورودی پایین در این سیستم نشان می‌دهد که استفاده شده از منابع قابل تجدید در تولید یپاز از نظر انرژی روحیه مشابه 77/7 درصد از کل انرژی ورودی، انرژی قابل تجدید (بیروی انسانی، کود دامی، آب آبیاری و بندر مصرفی) و 77/3 درصد آن انرژی غیرقابل تجدید (ماده‌آلاین، بیروی گازی، کود‌های شیمیایی، سرم و کنترل کششی) بود. نتایج هزینه‌های نشان داد که کل هزینه‌های تولید برای یک هکتار تولید یپاز 82742998 ریال بود. نسبت قابلیت به‌هوشی در این سیستم 1/45 بوده‌است. نتایج این آزمایش نتایج پیاز در استان خراسان رضوی کارایی انرژی افزاین دارد اما از نظر اقتصادی دارای سود قابل قبول است.

واژه‌های کلیدی: پیاز، انرژی، بهره‌وری انرژی، انرژی ورودی و خروجی

*

1. گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد
fa_ha140@stu.um.ac.ir

* مسئول مکانیابی، پست الکترونیکی:
پیاز یکی از اصلی‌ترین بذران ایران است و به عنوان یکی از مواد غذایی حیاتی بحساب می‌آید. کشت پیاز به‌صورت کشاورزی انبوه و کشاورزی نپه‌دار انجام می‌شود. هدف اصلی کشت پیاز افزایش تولید و بهبود کیفیت محصولات است.

کشت پیاز:

پیاز در مناطق نواحی کوهستانی و تندبادی از دسترس می‌باشد. این بذر از نظر بهداشتی همواره به عنوان یکی از مواد غذایی مهم و پر ارزش دانشمندان توجه کرده‌اند.

تولید:

تولید پیاز در ایران به‌طور کلی در مناطق کوهستانی و نواحی کوهپایه انجام می‌گیرد. تولید پیاز در این مناطق قیمت بالا دارد و به دلیل شرایط محیطی مناسب بهبود کیفیت و تولید بالقوه محصولات ممکن است.

اقتصادی:

اقتصادی کشت پیاز در ایران به‌طور کلی برآورد می‌شود که کاشت پیاز به‌طور معمول در مناطق کوهپایه و نواحی کوهستانی و نواحی کوهپایه انجام می‌گیرد. تولید پیاز در این مناطق بهبود تولید بالقوه محصولات ممکن است.

محصولات محصولات:

محصولات پیاز به‌طور کلی به‌طور معمول برای تولید پیاز، مخلوط از سرده‌های مختلف پیاز، مخلوط از انرژی و رودی و همچنین تجربه و تحلیل‌های اقتصادی تولید پیاز در استان‌های رضوی بود.

مواد و روش‌ها:

این‌ها این مطالعه در ۵۵ مزاره پیاز در استان‌های رضوی به‌طور معمول به سیستم‌های کشاورزی انبوه و کشاورزی نپه‌دار انجام می‌گردد. سیستم‌های کشاورزی انبوه و کشاورزی نپه‌دار به‌طور معمول به‌طور معمول در مناطق کوهپایه و نواحی کوهستانی بهبود تولید بالقوه محصولات ممکن است.

قلمداد:

گیاهی است از خانواده

Allium cepa L. که علاوه بر استفاده در خوراکی و به عنوان چاشنی غذا، یکی از مهم‌ترین گیاهان درونی‌ها برون‌کننده‌های موگر و مولتی‌وگر و دارای خواص درمانی بیشماری از قبیل آنتی‌بیوتیک، یابین، اورونده کلسیترول کاهن و مانع از تحلیل شرایبی می‌باشد.

همچنین در درمان فقدان استخوان، سرماخوردگی، سر، اسهال، دیابت و دیابت مبتنی استفاده قرار می‌گیرد و منشا آن نواحی غرب میانه و خواص اصلی‌ترین‌ها (۲۳).
ارزیابی کارایی انرژی و تحلیل اقتصادی تولید پیاز (Allium cepa L.)

فهرست اصلی

1. مقدمه
2. امتیازات اولیه شامل انرژی‌های ورودی و عملکرد پیاز از بررسی‌نامه‌ها به وسیله‌ی Excel و بررسی مدل‌های انرژی و خروجی (جدول 1) کل انرژی ورودی و خروجی در هکتار، نسبت انرژی یا کارایی به‌هزار (Energy use efficiency). انرژی خاص (Specific energy)، انرژی مخصوص (Energy productivity) و انرژی خاص (Net energy) محسوب می‌شود (شماره ۳).

3. عملکرد پیاز (kg/ha) = انرژی خاص (MJ/ha) (%)

4. عملکرد پیاز (mg/ha) = انرژی مخصوص (MJ/ha) (%)

5. انرژی مخصوص شامل نیروی انسانی، سوخت گازوئیل، آب، آب‌پیمایی و انرژی خریداری شده مانند، کودهای شیمیایی (NPK)، کود دامی، سموم (علف‌کش گل، داکالی و توتیل، خشک‌کش دیمیونهای، دیازیتون و دسیس و قارچ کش بومی و کارنادازیم)، و انرژی صرف شده برای تولید بند بود، انرژی‌های قابل تجذب شامل نیروی انسانی، کود دامی، آب آبی‌های و بذر مصرفی و انرژی‌های غیرقابل تجدید شامل مانند (آب، نیروی انسانی، کود دامی، شیمیایی، سموم شیمیایی و کودهای کاری کرده بود (4 و 5).

6. تحلیل‌های اقتصادی تولید پیاز ارزیابی شد و باگزشت و ناخالص (Net return)، باگزشت خالص (Gross return)، نسبت فایده به هزینه (Benefit to cost ratio) اقتصادی محاسبه گردید. باگزشت خالص از تقریب هزینه متغیر تولید از انرژی ناخالص تولید محاسبه گردید (9). باگزشت خالص از تقریب کل هزینه تولید از ارزش ناخالص تولید در هکتار و نسبت فایده به هزینه از تخمین ارزش ناخالص تولید به کل هزینه تولید در هکتار به دست آمد (8 و 9).

4. نتایج

5. تعداد نمونه طبق معادله ۱ تعیین گردید:

\[
N = \frac{X^2 \times S^2}{(N-1) \times d^2} + \frac{S^2}{(S^2 \times 2)}
\]

6. در این فرمول، N تعداد نمونه مورد نیاز و N تعداد کل جمعیت هدف می‌باشد. با بررسی این معادله، نتایج مورد مطالعه در جامعه است که صفحه مورد مطالعه از تعداد کاراهی اثری می‌باشد. با بررسی معادله فوق، تعداد نمونه (پیازکار) لازم جهت تکمیل بررسی‌نامه ۲/۵ نفربه دست آمده که جهت افزایش دقت محاسبات این رقم به ۵۵ نفر پیاز کار افزایش یافت.

کارایی انرژی مزارع تولید پیاز توسط نسبت انرژی ورودی (N/1) به آب آبی‌های و کربناتی، کودهای شیمیایی، کود دامی، سموم، آب آبی‌های، الکتریسیته و بذر مصرفی و خروجی (عملکرد محصول پیاز) محاسبه گردید (9 و 10). انرژی‌های ورودی و خروجی و معادلات این انرژی‌ها برحسب مکاوان غیر حاصل در ۱ نشان داده است. اطلاعات اولیه شامل انرژی‌های ورودی و عملکرد پیاز از بررسی‌نامه‌ها به وسیله‌ی Excel و بررسی مدل‌های انرژی و خروجی (جدول 1) کل انرژی ورودی و خروجی در هکتار در هکتار و انرژی به‌کار آمدن انرژی کارایی مصرف (Energy use efficiency).
جدول ۱. معادل انرژی ورودی و خروجی در تولید محصولات کشاورزی

<table>
<thead>
<tr>
<th>مشخصات (واحد)</th>
<th>معادل انرژی (مگاوات/واحد)</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- ورودی ها</td>
<td>Energy equivalent (MJ unit⁻¹)</td>
<td>Reference</td>
</tr>
<tr>
<td>۱- Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۱- نیروی انسانی (ساعت)</td>
<td>۱.۹۶</td>
<td>Pishgar Komleh et al., 2011</td>
</tr>
<tr>
<td>۱-۱- Human labor (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۲- ماشین‌آلات (ساعت)</td>
<td>۶۲.۷</td>
<td>Gorbani et al., 2011</td>
</tr>
<tr>
<td>۱-۲- Machinery (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۳- سوخت گازی (لیتر)</td>
<td>۵۰.۲</td>
<td>Gorbani et al., 2011</td>
</tr>
<tr>
<td>۱-۳- Diesel fuel (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۴- کودهای شیمیایی (کیلوگرم)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۴- Chemical fertilizers (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۴-۱- N (نیتروژن)</td>
<td>۶۶.۱</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱-۴-۱- Nitrogen (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۴-۲- P2O5 (سفیر)</td>
<td>۱۲.۴</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱-۴-۲- Phosphate (P2O5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۴-۳- K2O (پتاسیم)</td>
<td>۱۱.۲</td>
<td>Mohammadi et al., 2010</td>
</tr>
<tr>
<td>۱-۴-۳- Potassium (K2O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۵- Manure (تن)</td>
<td>۳۰۳</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱-۵- سموم (کیلوگرم)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۶- Chemicals (kg)</td>
<td>۲۳۸</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱-۶-۱- علافشک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۶-۱- Herbicide</td>
<td>۱۰۱</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱-۶-۲- حشره‌کش</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۶-۲- Insecticide</td>
<td>۲۱۶</td>
<td>Esengun et al., 2007</td>
</tr>
<tr>
<td>۱-۶-۳- فرآیند</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۶-۳- Fungicide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۷- آب آبادی (مترمکعب)</td>
<td>۱.۰۲</td>
<td>Gorbani et al., 2011</td>
</tr>
<tr>
<td>۱-۷- Water for irrigation (m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۸- الکتریسیته (کیلووات ساعت)</td>
<td>۳.۶۰</td>
<td>Gorbani et al., 2011</td>
</tr>
<tr>
<td>۱-۸- Electricity (kWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱-۹- بذر مصرفی (کیلوگرم)</td>
<td>۱۴.۷</td>
<td>Ozkan et al., 2004</td>
</tr>
<tr>
<td>۱-۹- Seeds (onion) (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲- خروجی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲- Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲-۱- کیلوگرم پیاز (وزن نر) (کیلوگرم)</td>
<td>۱.۶۰</td>
<td>Ozkan et al., 2004</td>
</tr>
<tr>
<td>۲-۱- Onion Yield (fresh weight) (kg)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 2. عملیات مدیریتی برای تولید پیاز

<table>
<thead>
<tr>
<th>اعمالهای عملیات (Operations/Practices)</th>
<th>تولید پیاز (Onion production)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام گلخانه (Name of variety)</td>
<td>زرگان، گلدن (Zarfam, Golden)</td>
</tr>
<tr>
<td>عملیات آماده‌سازی زمین. تاکثیر جوی (زمان اضافه‌ی ۲۸۵ MF ۷۵ hp Land preparation tractor used)</td>
<td>نوسان عمیق، دیسک‌زدای و ماله‌کش (Moldboard plow, disc harrows, land leveler)</td>
</tr>
<tr>
<td>زمان آماده‌سازی زمین (Land preparation period)</td>
<td>بهمن - اسفند (February - March)</td>
</tr>
<tr>
<td>متوسط تعداد دفعات شخم (Average tilling number)</td>
<td>۲.۴</td>
</tr>
<tr>
<td>زمان کاشته (Date of planting)</td>
<td>اسفند - فروردین (March - April)</td>
</tr>
<tr>
<td>زمان کوددهی (زمان کوددهی قبل از کاشت) (زمان کوددهی بعد از کاشت)</td>
<td>آبان - اسفند (November - March)</td>
</tr>
<tr>
<td>زمان تغذیه (زمان تغذیه قبل از کاشت) (زمان تغذیه بعد از کاشت)</td>
<td>فوروردین - مهر (April - October)</td>
</tr>
<tr>
<td>متوسط تعداد دفعات آبیاری (Average number of irrigation)</td>
<td>۱۸.۲</td>
</tr>
<tr>
<td>زمان سپاشی (زمان سپاشی قبل از کاشت) (زمان سپاشی بعد از کاشت)</td>
<td>فوروردین - مهر (April - October)</td>
</tr>
<tr>
<td>متوسط تعداد دفعات سپاشی (Average number of spraying)</td>
<td>۶.۲</td>
</tr>
<tr>
<td>زمان برداشت (Harvesting period)</td>
<td>مهر - آبان (October - November)</td>
</tr>
</tbody>
</table>

تعداد و بحث

مشخصات زمین و عملیات کاشت پیاز

زمین و متوسط تعداد عملیات مدیریتی تولید پیاز از شخم و آماده‌سازی بستر تا برداشت محصول در جدول ۲ ارائه گردیده است. شخم و آماده‌سازی بستر تا شرایط نهایی بهمن و اسفند و اکثر تاکثیر جوی (فاز اول) در ماه‌های بهمن تا آبان (۲۸۵) با قدرت ۷۵ اسب بخار انجام می‌شود. کاشت بشر در اسفند و اوایل فروردین ماه انجام می‌گردد. کوددهی قبل از کاشت از آبان تا اسفند ماه صورت می‌پذیرد. سایر عملیات مدیریتی در مرحله داشت از اسفند ماه تا مهر ماه ادامه داشته و عملیات برداشت در طی ماه‌های مهر و آبان انجام می‌گیرد. زمان کوددهی بعد از کاشت از اسفند تا خرداد به طول می‌انجامد.

متوسط تعداد دفعات کوددهی (قبل و بعد از کاشت) ۴/۱ بود. کود نیترات‌های مورد استفاده با شکل اوره، کود فسفر از نوع دی آمونیوم فسفات، سوی فسفات تربیل، کود فسفات، سولفات، بووان مس با آبیاری بعد از کاشت ۱۸۲ رتیه و در ماه‌های فروردین تا مهر انجام می‌گردد. عملیات سپاشی شامل استفاده از علف کش، آفت کش و فارچ کش از فروردین تا مهر ماه انجام می‌گردد و متوسط تعداد دفعات سپاشی ۲/۶ بود (جدول ۲).
جدول 3: مصرف انرژی و ارتباط بین انرژی ورودی و خروجی در تولید محصول پیاز

<table>
<thead>
<tr>
<th>انرژی Energy</th>
<th>مقداری از این اعداد سطح (مقدار/هکتار)</th>
<th>مصرف انرژی (مگاوات ساعت)</th>
<th>کل مصرف انرژی (مگاوات ساعت)</th>
<th>درصد از کل انرژی ورودی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی P (کیلووات ساعت)</td>
<td>1.96</td>
<td>3320</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>انرژی Q (میلیواط/ساعت)</td>
<td>62.7</td>
<td>466</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>انرژی R (مطیع)</td>
<td>50.2</td>
<td>6393</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td>انرژی S (میلیواط)</td>
<td>66.1</td>
<td>14483</td>
<td>14.7</td>
<td></td>
</tr>
</tbody>
</table>

1- ورودی‌ها

1- انرژیات

- توربین تیتانیا (ساعت)
- ماسه‌ماسو (ساعت)
- ماشین‌آلات (ساعت)
- سوخت گازوئیل (لیتر)
- سوخت فیبر (لیتر)
- سوخت کاربن (لیتر)
- سوخت نفتی (لیتر)
- سوخت زغال (لیتر)
- سوخت نفتی (لیتر)
- سوخت بنزین (لیتر)
- سوخت آبگرمی (لیتر)
- سوخت آبگر...
در جدول ۴ نسبت انرژی و خروجی در تولید محصول پیاز

<table>
<thead>
<tr>
<th>عنوان</th>
<th>واحد</th>
<th>پیاز (MJ ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>انرژی رودی</td>
<td>مگالوتون هکتار</td>
<td>98479</td>
</tr>
<tr>
<td>انرژی خروجی</td>
<td>مگالوتون هکتار</td>
<td>117164</td>
</tr>
<tr>
<td>انرژی خروجی (fresh weight)</td>
<td>کیلوگرم هکتار</td>
<td>73227</td>
</tr>
<tr>
<td>ظرفیت انرژی</td>
<td>کیلوگرم مگالوتون</td>
<td>0.74</td>
</tr>
<tr>
<td>انرژی خودجوش</td>
<td>مگالوتون اتن</td>
<td>1345</td>
</tr>
<tr>
<td>انرژی خالص</td>
<td>مگالوتون هکتار</td>
<td>18684</td>
</tr>
</tbody>
</table>

محصولات زراعی کشور ماند گندم (۸)، دری (۷)، کلزا و (۵) و سمپزمنی (۱۳) با یک نوع آنتی‌پیاز به‌کمک اب و پایین بودن سفره‌های آب‌زایی مکملی به‌طور کلی بیشترین تولید محصول هکتار و کاهش انرژی ورودی و سیستم‌های کشاورزی ایران در سال‌های ۱۹۶۰-۱۹۹۰ برتیب ۴/۰ مگالوتون در کیلوگرم و ۲/۵ مگالوتون در هکتار به‌دست آمد (۱۳/۲). در جدول ۵ توزیع کل انرژی ورودی به اشکال مختلف، به‌کمک شبیه‌سازی برای توان آثار معنی‌داری در فناوری‌های کاربردی انرژی در سیستم‌های کشاورزی ایران داشته باشد (۸). به‌خصوص (۴) میانگین معمول پیاز در این نوع و در ۳/۴ تری نت در هکتار و کاربردی انرژی مزارع تولید پیاز را (۳/۴) عنوان نمود. موارد (۴) کارایی انرژی پیاز در مزارع ارگانتیک با مدیریت

فرشده را ۳۱/۵ ماهیاس نمود. این محقق دیلی ۵۰ پایه شدن کارایی انرژی در این منطقه را استفاده از نیروی کارگری به‌عنوان منبع انرژی قابل تجدید ذکر نمود. میزان بهره‌وری انرژی، انرژی مصرف و انرژی خالص در جدول ۴ آمده است. بهره‌وری انرژی در مزارع تولید پیاز در استان خراسان رضوی، ۷۰/۰ به‌دست آمد که نسبت به ساب
جدول ۵. کل انرژی ورودی به اشکال مختلف. کل انرژی ورودی به تولید محصول پیاز

<table>
<thead>
<tr>
<th>شکل انرژی (مگاژول/ها)</th>
<th>پیاز</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اثر مستقیم</td>
<td>71979</td>
<td>73.1</td>
</tr>
<tr>
<td>Direct energy</td>
<td>26501</td>
<td>26.9</td>
</tr>
<tr>
<td>انرژی غیرمستقیم</td>
<td>22361</td>
<td>22.7</td>
</tr>
<tr>
<td>Indirect energy</td>
<td>76119</td>
<td>77.3</td>
</tr>
<tr>
<td>انرژی غیرقابل تجدید</td>
<td>98479</td>
<td>100</td>
</tr>
<tr>
<td>Renewable energy</td>
<td>30,430</td>
<td></td>
</tr>
<tr>
<td>Non-renewable energy</td>
<td>30,430</td>
<td></td>
</tr>
<tr>
<td>کل انرژی ورودی</td>
<td>30,430</td>
<td></td>
</tr>
<tr>
<td>Total energy input</td>
<td>30,430</td>
<td></td>
</tr>
</tbody>
</table>

a: Indicates percentage of total energy input.
b: Includes human labor, diesel, water, electricity.
c: Includes machinery, fertilizers, manure, chemicals, seeds.
d: Includes human labor, manure, water, seeds.
e: Includes machinery, diesel, fertilizers, chemicals, electricity.

کل انرژی ورودی به تولید محصول پیاز به توجه به نتایج کشمش متنوع مختلف استان و استفاده از سیستم‌های کارآمد و در چنین تغذیه گیاهان توسط منابع انرژی تجدیدپذیر به عنوان مثال کودهای تولیدی درون ورزیده و کود سبز، نسبت منابع انرژی تجدیدپذیر در تولید پیاز را تحلیل کرد.

تحليل اقتصادی تولید پیاز

ارزش اقتصادی تولید پیاز ۱۳۰۷۳۳۹۶۹۷ ریال. کل هزینه تولید ۷۹۴۶۲۱۹۸ سنت فايده به هزینه در تولید محصول پیاز ۱/۵۵ به‌دست می‌آید. نسبت فایده به هزینه در سایر محصولات زراعی در ایران مشابه بود به علت مانند نسبت فایده به هزینه در گندم دیم و آی، به ترتیب ۲/۵۴ و ۲/۸۷، ذفت ۷/۱۹ (۱۷)، در سیب زمینی ۲/۱۸ (۱۷)، خیار گلخانه‌ای ۱/۵۷ (۱۷) به‌دست می‌آید.

نتیجه‌گیری

مدیریت انرژی موضوع مهمی در بحث کارآیی، پایداری و استفاده اقتصادی از انرژی است. کل انرژی ورودی برای تولید ۹۸۴۷۹ مگاژول و کارایی انرژی آن ۱/۱۹ به‌دست می‌آمد. بنابراین کارایی انرژی در تولید محصول پیاز به‌دست می‌آید. از این رو، بررسی کارایی انرژی تولید محصول پیاز به‌عنوان مصرف زیاد کل انرژی و یک درصد دیگر مصرف زیاد کل انرژی، که به‌عنوان هزینه‌های کاهش گازوئیل، پایین بود. در همین راستا، با مصرف انرژی که در محصول پیاز کاشت کارآیی انرژی را به بیضت می‌توان آن را با ارزش کاهش گرفت و در تولید محصول پیاز کارکردیه که دارای بیشترین سهم را در مصرف انرژی ورودی به خود اختصاص داشت. به طور کلی، این اثر به‌عنوان هزینه‌های کاهش گازوئیل، پایین بود. در همین راستا، با مصرف انرژی که در محصول پیاز کارکردیه که دارای بیشترین سهم را در مصرف انرژی ورودی به خود اختصاص داشت.

که سبب افزایش سود می‌شود از قبل عملکرد و قیمت فروش
جدول ۶: تحلیل اقتصادی تولید پیاز

<table>
<thead>
<tr>
<th>جزئیات اقتصادی</th>
<th>ارزش</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد (کیلوگرم/هکتار)</td>
<td>73227</td>
</tr>
<tr>
<td>قیمت فروش (ریال/کیلوگرم)</td>
<td>1785</td>
</tr>
<tr>
<td>ارزش ناخالص (ریال/هکتار)</td>
<td>130743967</td>
</tr>
<tr>
<td>هزینه متغیر تولید (ریال/هکتار)</td>
<td>57390181</td>
</tr>
<tr>
<td>هزینه ثابت تولید (ریال/هکتار)</td>
<td>21872727</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/هکتار)</td>
<td>79262908</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/کیلوگرم)</td>
<td>1082</td>
</tr>
<tr>
<td>کل هزینه تولید (ریال/هکتار)</td>
<td>73353786</td>
</tr>
<tr>
<td>بارگشت ناخالص (ریال/هکتار)</td>
<td>51481059</td>
</tr>
<tr>
<td>نسبت فاصله به هزینه</td>
<td>1.65</td>
</tr>
</tbody>
</table>

در تولید یک هکتار پیاز، ۱۴۸۱۵ دلار بود. مصرف انرژی‌های غیرقابل تجدید بیشتر از المصري بود. مصرف انرژی‌های قابل تجدید به‌دست آمد و بارگشت خالص در تولید یک هکتار پیاز، ۱۴۸۱۵ دلار بود.

منابع مورد استفاده